The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A071207 Triangular array T(n,k) read by rows, giving number of rooted trees on the vertex set {1..n+1} where k children of the root have a label smaller than the label of the root. 8
 1, 1, 1, 4, 4, 1, 27, 27, 9, 1, 256, 256, 96, 16, 1, 3125, 3125, 1250, 250, 25, 1, 46656, 46656, 19440, 4320, 540, 36, 1, 823543, 823543, 352947, 84035, 12005, 1029, 49, 1, 16777216, 16777216, 7340032, 1835008, 286720, 28672, 1792, 64, 1, 387420489 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The n-th term of the n-th binomial transform of a sequence {b} is given by {d} where d(n) = sum(k=0,n,T(n,k)*b(k)) and T(n,k)=binomial(n,k)*n^(n-k); such diagonals are related to the hyperbinomial transform (A088956). - Paul D. Hanna, Nov 04 2003 T(n,k) gives the number of divisors of A181555(n) with (n-k) distinct prime factors. See also A001221, A146289, A146290, A181567. - Matthew Vandermast, Oct 31 2010 T(n,k) is the number of partial functions on {1,2,...,n} leaving exactly k elements undefined. Row sums = A000169. - Geoffrey Critzer, Jan 08 2012 As a triangular matrix, transforms rows into diagonals in the table of coefficients of successive iterations of x/(1-x). - Paul D. Hanna, Jan 19 2014 Also the number of rooted trees on n+1 labeled vertices in which some specified vertex (say, vertex 1) has k children. - Alan Sokal, Jul 22 2022 LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened C. Chauve, S. Dulucq and O. Guibert, Enumeration of some labeled trees, Proceedings of FPSAC/SFCA 2000 (Moscow), Springer, pp. 146-157. Alan D. Sokal, A remark on the enumeration of rooted labeled trees, arXiv:1910.14519 [math.CO], 2019 and Discrete Math. 343, 111865 (2020). FORMULA T(n,k) = binomial(n, k)*n^(n-k). E.g.f.: (-LambertW(-y)/y)^x/(1+LambertW(-y)). - Vladeta Jovovic EXAMPLE 1 1 1 4 4 1 27 27 9 1 256 256 96 16 1 3125 3125 1250 250 25 1 46656 46656 19440 4320 540 36 1 MAPLE T:= (n, k)-> binomial(n, k)*n^(n-k): seq(seq(T(n, k), k=0..n), n=0..10); MATHEMATICA Prepend[Flatten[ Table[Table[Binomial[n, k] n^(n - k), {k, 0, n}], {n, 1, 8}]], 1] (* Geoffrey Critzer, Jan 08 2012 *) PROG (PARI) T(n, k)=if(k<0 || k>n, 0, binomial(n, k)*n^(n-k)) (PARI) /* Transforms rows into diagonals in the iterations of x/(1-x): */ {T(n, k)=local(F=x, M, N, P, m=n); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, x/(1-x+x*O(x^(m+2))))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, F=x; for(i=1, r, F=subst(F, x, x/(1-x+x*O(x^(m+2))))); polcoeff(F, c)); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Jan 19 2014 CROSSREFS Cf. A000169, A000312, A089466, A088956, A166900. Sequence in context: A116866 A126280 A170986 * A136214 A067328 A111845 Adjacent sequences: A071204 A071205 A071206 * A071208 A071209 A071210 KEYWORD easy,nonn,tabl AUTHOR Cedric Chauve (chauve(AT)lacim.uqam.ca), May 16 2002 EXTENSIONS Name edited by Alan Sokal, Jul 22 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 13:29 EDT 2024. Contains 371780 sequences. (Running on oeis4.)