login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A071208
Triangular array T(n,k) read by rows, giving number of labeled free trees such that the root is smaller than all its children, with respect to the number n of vertices and to the number k of decreasing edges.
1
1, 2, 2, 6, 15, 6, 24, 104, 104, 24, 120, 770, 1345, 770, 120, 720, 6264, 16344, 16344, 6264, 720, 5040, 56196, 200452, 300167, 200452, 56196, 5040, 40320, 554112, 2552192, 5241984, 5241984, 2552192, 554112, 40320, 362880, 5973264, 34138908, 90857052, 124756281, 90857052, 34138908, 5973264, 362880
OFFSET
1,2
LINKS
Cedric Chauve, S. Dulucq and O. Guibert, Enumeration of some labeled trees, Proceedings of FPSAC/SFCA 2000 (Moscow), Springer, pp. 146-157.
Yen-Jen Cheng, Sen-Peng Eu, Tung-Shan Fu, and Jyun-Cheng Yao, On q-Counting of Noncrossing Chains and Parking Functions, arXiv:2312.07351 [math.CO], 2023.
A. M. Khidr and B. S. El-Desouky, A symmetric sum involving the Stirling numbers of the first kind, European J. Combin., 5 (1984), 51-54. See Table 1.
FORMULA
T(n,k) = Sum_{m=k+1..n} (-1)^(k+1)*binomial(m,k+1)*Stirling1(n+1,n+1-m)*n^(n-m) with 0 <= k < n.
EXAMPLE
Triangle begins:
1
2 2
6 15 6
24 104 104 24
120 770 1345 770 120
720 6264 16344 16344 6264 720
...
MAPLE
T:= (n, k)-> add((-1)^(k+1)*binomial(m, k+1)*
Stirling1(n+1, n+1-m)*n^(n-m), m=k+1..n):
seq(seq(T(n, k), k=0..n-1), n=1..9);
MATHEMATICA
A071208[n_, k_] := Sum[(-1)^(k+1)*Binomial[m, k+1]*StirlingS1[n+1, n+1-m]*n^(n-m), {m, k+1, n}];
Table[A071208[n, k], {n, 10}, {k, 0, n-1}] (* Paolo Xausa, Jun 28 2024 *)
CROSSREFS
Row sums give A000312.
Cf. A000142.
Sequence in context: A259810 A142471 A323233 * A231536 A216242 A330798
KEYWORD
easy,nonn,tabl
AUTHOR
Cedric Chauve (chauve(AT)lacim.uqam.ca), May 16 2002
EXTENSIONS
Offset 1 from Alois P. Heinz, Jun 26 2024
STATUS
approved