login
A071209
Triangular array T(n,k) read by rows, giving number of labeled free trees such that the root is smaller than all its children, with respect to the number n of vertices and to the size k of the subtree rooted at the vertex labeled by 1.
0
0, 1, 1, 0, 3, 8, 3, 0, 16, 81, 32, 18, 0, 125, 1024, 405, 240, 160, 0, 1296, 15625, 6144, 3645, 2560, 1875, 0, 16807, 279936, 109375, 64512, 45360, 35000, 27216, 0, 262144, 5764801, 2239488, 1312500, 917504, 708750, 580608, 470596, 0, 4782969
OFFSET
1,5
REFERENCES
C. Chauve, S. Dulucq and O. Guibert, Enumeration of some labeled trees, Proceedings of FPSAC/SFCA 2000 (Moscow), Springer, pp. 146-157.
LINKS
FORMULA
binomial(n, k-1)*k^(k-2)*(n-k)^(n+1-k)
MAPLE
(n, k) -> binomial(n, k-1)*k^(k-2)*(n-k)^(n+1-k);
PROG
(PARI) tabl(nn) = {for (n=1, nn, for (k=1, n, print1(binomial(n, k-1)*k^(k-2)*(n-k)^(n+1-k), ", "); ); print(); ); } \\ Michel Marcus, Jun 27 2013
CROSSREFS
Cf. A000312.
Sequence in context: A245171 A011230 A245168 * A156227 A021727 A309648
KEYWORD
easy,nonn,tabl
AUTHOR
Cedric Chauve (chauve(AT)lacim.uqam.ca), May 16 2002
STATUS
approved