login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111845
Triangle P, read by rows, that satisfies [P^4](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(4*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(k,k)=1 and P(k+1,1)=P(k+1,0) for k>=0.
5
1, 1, 1, 4, 4, 1, 40, 40, 16, 1, 1040, 1040, 544, 64, 1, 78240, 78240, 48960, 8320, 256, 1, 18504256, 18504256, 13110400, 2878720, 131584, 1024, 1, 14463224448, 14463224448, 11192599808, 2982187520, 180270080, 2099200, 4096, 1
OFFSET
0,4
COMMENTS
Column 0 and column 1 are equal for n>0.
FORMULA
Let q=4; the g.f. of column k of P^m (ignoring leading zeros) equals: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} L(q^j*x) where L(x) satisfies: x = Sum_{n>=1} -(-1)^n/n!*Product_{j=0..n-1} L(q^j*x); L(x) equals the g.f. of column 0 of the matrix log of P (A111849).
EXAMPLE
Let q=4; the g.f. of column k of matrix power P^m is:
1 + (m*q^k)*L(x) + (m*q^k)^2/2!*L(x)*L(q*x) +
(m*q^k)^3/3!*L(x)*L(q*x)*L(q^2*x) +
(m*q^k)^4/4!*L(x)*L(q*x)*L(q^2*x)*L(q^3*x) + ...
where L(x) satisfies:
x = L(x) - L(x)*L(q*x)/2! + L(x)*L(q*x)*L(q^2*x)/3! -+ ...
and L(x) = x + 4/2!*x^2 + 56/3!*x^3 + 1728/4!*x^4 +...(A111849).
Thus the g.f. of column 0 of matrix power P^m is:
1 + m*L(x) + m^2/2!*L(x)*L(4*x) + m^3/3!*L(x)*L(4*x)*L(4^2*x) +
m^4/4!*L(x)*L(4*x)*L(4^2*x)*L(4^3*x) + ...
Triangle P begins:
1;
1,1;
4,4,1;
40,40,16,1;
1040,1040,544,64,1;
78240,78240,48960,8320,256,1;
18504256,18504256,13110400,2878720,131584,1024,1; ...
where P^4 shifts columns left and up one place:
1;
4,1;
40,16,1;
1040,544,64,1;
78240,48960,8320,256,1; ...
PROG
(PARI) P(n, k, q=4)=local(A=Mat(1), B); if(n<k || k<0, 0, for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, if(j==1, B[i, j]=(A^q)[i-1, 1], B[i, j]=(A^q)[i-1, j-1])); )); A=B); return(A[n+1, k+1]))
CROSSREFS
Cf. A111846 (column 0), A111847 (row sums), A111848 (matrix log), A111840 (q=3), A078536 (variant).
Sequence in context: A071207 A136214 A067328 * A120396 A141024 A173210
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Aug 23 2005
STATUS
approved