login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141024
A triangular sequence in which the Prime[n]^(2*n) is treated like a variable expansion: (1-Prime[n])^(2*n) with the base Prime[0] is defined as one (in the Goldbach tradition) to lower the coefficients: t(n,m)=(-1)^m*Prime[n]^(2*n - m)*Binomial[2*n, m].
0
1, 4, -4, 1, 81, -108, 54, -12, 1, 15625, -18750, 9375, -2500, 375, -30, 1, 5764801, -6588344, 3294172, -941192, 168070, -19208, 1372, -56, 1, 25937424601, -23579476910, 9646149645, -2338460520, 372027810, -40584852, 3074610, -159720, 5445, -110, 1, 23298085122481, -21505924728444
OFFSET
1,2
COMMENTS
The row sums are nearly log -linear:
{1, 1, 16, 4096, 1679616, 10000000000, 8916100448256, 72057594037927936,
121439531096594251776, 1457498964228107529355264,
87732524600823436081182539776};
b = Table[Log[Sum[T[n, m], {m, 0, 2*n}]], {n, 0, 10}];
f[x_] = Fit[b, {1, x}, x]=-15.6357 + 6.93343 x.
If Prime[n+1] is used, the whole set of coefficients is shifted upward,
but is still near log-Linear.
These coefficients as polynomials are the result of treating a Fourier
expansion of frequency as a Zeta zero like function where the b[n]'s of the
Zeta zeros become phase like angular variables and drop out.
The power of two comes from the squaring necessary to isolate the primes as a variable. Basically the coefficient sequence is a quantum polynomial set
whose weights are the row sums.
The roots are 2*n multiplicity of primes: ( Mathematica fails here above 11
to give the Integer roots to the polynomials)
Table[Table[x /. NSolve[Sum[T[n, m]*x^m, {m, 0, 2*n}] == 0, x][[m + 1]], {m, 0, 2*n - 1}], {n, 0, 10}]
FORMULA
t(n,m)=(-1)^m*Prime[n]^(2*n - m)*Binomial[2*n, m].
EXAMPLE
{1},
{4, -4, 1},
{81, -108, 54, -12, 1},
{15625, -18750, 9375, -2500, 375, -30, 1},
{5764801, -6588344, 3294172, -941192, 168070, -19208, 1372, -56,1}, {25937424601, -23579476910, 9646149645, -2338460520, 372027810, -40584852, 3074610, -159720, 5445, -110, 1},
{23298085122481, -21505924728444, 9098660462034, -2332989862060, 403786706895, -49696825464, 4459971516, -294064056, 14137695, -483340, 11154, -156, 1},
{168377826559400929, -138664092460683118, 53018623587908251, -12474970255978412, 2018009894349449, -237412928746994, 20948199595323, -1408282325736, 72485119707, -2842553714, 83604521, -1788332, 26299, -238,1},
{288441413567621167681, -242898032477996772784, 95880802293946094520,
-23549670738863953040, 4028233152700413020, -508829450867420592,
49097578592470408, -3691547262591760, 218578456337670, -10225892694160,
376743415048, -10815600432, 237184220, -3841040, 43320, -304, 1}, {3244150909895248285300369, -2538900712091933440669854,
938289393599192793291033, -217574352138943256415312, 35474079153088574415540,
-4318583549071652537544, 406823087956025239044, -30322217735852812848,
1812741277686852942, -87572042400331060, 3426732093925998, -108355165025328,
2748138243396, -55146586824, 856313460, -9928272, 80937, -414, 1},
{176994576151109753197786640401, -122065224931799829791576993380,
39986884029382702862757980590, -8273148419872283350915444260,
1212444164981282904875539245, -133786942342762251572473296,
11533357098513987204523560, -795403937828550841691280,
44570048240392935094770, -2049197620247951038840, 77728185595611935956,
-2436620238106957240, 63016040640697170, -1337210411473680, 23055351921960,
-318004854096, 3426776445, -27803460, 159790, -580, 1}
MATHEMATICA
Clear[T, n, m] T[n_, m_] = If[n == 0, (-1)^m*Binomial[2*n, m], (-1)^m*Prime[n]^(2*n - m)*Binomial[2*n, m]]; a = Table[Table[T[n, m], {m, 0, 2*n}], {n, 0, 10}]; Flatten[a]
CROSSREFS
Sequence in context: A067328 A111845 A120396 * A173210 A328922 A058888
KEYWORD
uned,tabf,sign
AUTHOR
Roger L. Bagula, Jul 29 2008
STATUS
approved