login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141025
a(n) = (2^(2+n)-(-1)^n)/3 - 2*n.
1
1, 1, 1, 5, 13, 33, 73, 157, 325, 665, 1345, 2709, 5437, 10897, 21817, 43661, 87349, 174729, 349489, 699013, 1398061, 2796161, 5592361, 11184765, 22369573, 44739193, 89478433, 178956917, 357913885, 715827825, 1431655705, 2863311469, 5726622997, 11453246057, 22906492177
OFFSET
0,4
FORMULA
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4).
a(n) = A001045(n+2) - 2*n.
a(n+1) - a(n) = 4*A000975(n-1).
a(n+1) - 2*a(n)= 2*(n-1) + (-1)^n = -1, -1, 3, 3, 7, 7, 11, 11,... duplicated A004767.
G.f. ( -1+2*x+x^2-6*x^3 ) / ( (1+x)*(2*x-1)*(x-1)^2 ). - R. J. Mathar, Jul 07 2011
MATHEMATICA
CoefficientList[Series[(-1 + 2*x + x^2 - 6*x^3)/((1 + x)*(2*x - 1)*(x - 1)^2), {x, 0, 50}], x] (* G. C. Greubel, Oct 11 2017 *)
PROG
(Magma) [(2^(2+n)-(-1)^n)/3-2*n: n in [0..40]]; // Vincenzo Librandi, Aug 08 2011
(PARI) for(n=0, 50, print1((2^(2+n)-(-1)^n)/3 - 2*n, ", ")) \\ G. C. Greubel, Oct 11 2017
CROSSREFS
Sequence in context: A308812 A321124 A001981 * A100227 A185454 A278764
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jul 29 2008
EXTENSIONS
Definition replaced by closed form by R. J. Mathar, Jul 07 2011
STATUS
approved