login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136214
Triangle U, read by rows, where U(n,k) = Product_{j=k..n-1} (3*j+1) for n > k with U(n,n) = 1.
7
1, 1, 1, 4, 4, 1, 28, 28, 7, 1, 280, 280, 70, 10, 1, 3640, 3640, 910, 130, 13, 1, 58240, 58240, 14560, 2080, 208, 16, 1, 1106560, 1106560, 276640, 39520, 3952, 304, 19, 1, 24344320, 24344320, 6086080, 869440, 86944, 6688, 418, 22, 1
OFFSET
0,4
COMMENTS
Let G(m, k, p) = (-p)^k*Product_{j=0..k-1}(j - m - 1/p) and T(n, k, p) = G(n-1, n-k, p) then T(n, k, 1) = A094587(n, k), T(n, k, 2) = A112292(n, k) and T(n, k, 3) is this sequence. - Peter Luschny, Jun 01 2009, revised Jun 18 2019
FORMULA
Matrix powers: column 0 of U^(k+1) = column k of A136216 for k >= 0; simultaneously, column k = column 0 of A136216^(3k+1) for k >= 0. Element in column 0, row n, of matrix power U^(k+1) = A007559(n)*C(n+k,k), where A007559 are triple factorials found in column 0 of this triangle.
EXAMPLE
Triangle begins:
1;
1, 1;
4, 4, 1;
28, 28, 7, 1;
280, 280, 70, 10, 1;
3640, 3640, 910, 130, 13, 1;
58240, 58240, 14560, 2080, 208, 16, 1;
1106560, 1106560, 276640, 39520, 3952, 304, 19, 1; ...
Matrix inverse begins:
1;
-1, 1;
0, -4, 1;
0, 0, -7, 1;
0, 0, 0, -10, 1;
0, 0, 0, 0, -13, 1; ...
MAPLE
nmax:=8; for n from 0 to nmax do U(n, n):=1 od: for n from 0 to nmax do for k from 0 to n do if n > k then U(n, k) := mul((3*j+1), j = k..n-1) fi: od: od: for n from 0 to nmax do seq(U(n, k), k=0..n) od: seq(seq(U(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jul 04 2011, revised Nov 23 2012
MATHEMATICA
Table[Product[3*j+1, {j, k, n-1}], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 14 2019 *)
PROG
(PARI) T(n, k)=if(n==k, 1, prod(j=k, n-1, 3*j+1))
(Magma) [[n eq 0 select 1 else k eq n select 1 else (&*[3*j+1: j in [k..n-1]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jun 14 2019
(Sage)
def T(n, k):
if (k==n): return 1
else: return product(3*j+1 for j in (k..n-1))
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 14 2019
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Feb 07 2008
STATUS
approved