OFFSET
1,4
COMMENTS
Also the number of nonempty subsets of {1..n-1} that cannot be linearly combined using all positive coefficients to obtain n. - Gus Wiseman, Sep 10 2023
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..100
FORMULA
a(n) = 2^(n-1) - A088314(n). - Charlie Neder, Feb 08 2019
a(n) = A365045(n) - 1. - Gus Wiseman, Sep 10 2023
EXAMPLE
a(4)=3 because there are three different subsets S of {1,2,3} satisfying the condition: {3}, {2,3} & {1,2,3}. For the other subsets S, such as {1,2}, there is a partition of 4 which uses them all (such as 4 = 1+1+2).
From Gus Wiseman, Sep 10 2023: (Start)
The a(6) = 22 subsets:
{4} {2,3} {1,2,4} {1,2,3,4} {1,2,3,4,5}
{5} {2,5} {1,2,5} {1,2,3,5}
{3,4} {1,3,4} {1,2,4,5}
{3,5} {1,3,5} {1,3,4,5}
{4,5} {1,4,5} {2,3,4,5}
{2,3,4}
{2,3,5}
{2,4,5}
{3,4,5}
(End)
MATHEMATICA
combp[n_, y_]:=With[{s=Table[{k, i}, {k, y}, {i, 1, Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
Table[Length[Select[Rest[Subsets[Range[n-1]]], combp[n, #]=={}&]], {n, 7}] (* Gus Wiseman, Sep 10 2023 *)
PROG
(Python)
from sympy.utilities.iterables import partitions
def A070880(n): return (1<<n-1)-len({tuple(sorted(set(p))) for p in partitions(n)}) # Chai Wah Wu, Sep 10 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Nov 16 2003
EXTENSIONS
Edited by N. J. A. Sloane, Sep 09 2017
a(20)-a(34) from Alois P. Heinz, Feb 08 2019
STATUS
approved