login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070877
Expansion of Product_{k>=1} (1 - 2x^k).
7
1, -2, -2, 2, 2, 6, -2, 2, -6, -10, -2, -6, -6, 6, 22, -6, 26, 14, 22, -6, -14, -2, -10, -46, -46, -50, -18, 18, -78, 22, 14, 82, 42, 166, 14, 42, 170, 118, 6, 106, -150, -66, -122, -118, -62, -370, -282, -350, -126, -354, -2, -94, 226, -250, 30, 450, 730, 342, 894, 474, 890, 358, 758, 58, 1210, 782, -778, 26, -270, -1250
OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Giovanni Resta)
EXAMPLE
G.f. = 1 - 2*x - 2*x^2 + 2*x^3 + 2*x^4 + 6*x^5 - 2*x^6 + 2*x^7 - 6*x^8 - 10*x^9 + ...
MATHEMATICA
CoefficientList[ Series[ Product[(1 - 2t^k), {k, 1, 80}], {t, 0, 80}], t]
a[ n_] := SeriesCoefficient[ -QPochhammer[2, x], {x, 0, n}]; (* Michael Somos, Mar 11 2014 *)
PROG
(PARI) N=66; q='q+O('q^N); Vec(sum(n=0, N, (-2)^n*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) )) \\ Joerg Arndt, Mar 09 2014
(PARI) N=66; q='q+O('q^N); t2=Vec( prod(k=1, N, 1-2*q^k) ) \\ Joerg Arndt, Mar 11 2014
CROSSREFS
KEYWORD
sign
AUTHOR
Sharon Sela (sharonsela(AT)hotmail.com), May 24 2002
EXTENSIONS
Edited by Robert G. Wilson v, May 26 2002
Corrected by Vincenzo Librandi, Mar 11 2014
STATUS
approved