login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} (1 - 2x^k).
7

%I #31 Sep 09 2017 07:05:17

%S 1,-2,-2,2,2,6,-2,2,-6,-10,-2,-6,-6,6,22,-6,26,14,22,-6,-14,-2,-10,

%T -46,-46,-50,-18,18,-78,22,14,82,42,166,14,42,170,118,6,106,-150,-66,

%U -122,-118,-62,-370,-282,-350,-126,-354,-2,-94,226,-250,30,450,730,342,894,474,890,358,758,58,1210,782,-778,26,-270,-1250

%N Expansion of Product_{k>=1} (1 - 2x^k).

%H Seiichi Manyama, <a href="/A070877/b070877.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Giovanni Resta)

%e G.f. = 1 - 2*x - 2*x^2 + 2*x^3 + 2*x^4 + 6*x^5 - 2*x^6 + 2*x^7 - 6*x^8 - 10*x^9 + ...

%t CoefficientList[ Series[ Product[(1 - 2t^k), {k, 1, 80}], {t, 0, 80}], t]

%t a[ n_] := SeriesCoefficient[ -QPochhammer[2, x], {x, 0, n}]; (* _Michael Somos_, Mar 11 2014 *)

%o (PARI) N=66; q='q+O('q^N); Vec(sum(n=0, N, (-2)^n*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) )) \\ _Joerg Arndt_, Mar 09 2014

%o (PARI) N=66; q='q+O('q^N); t2=Vec( prod(k=1, N, 1-2*q^k) ) \\ _Joerg Arndt_, Mar 11 2014

%Y Cf. A070933, A010815, A032302.

%K sign

%O 0,2

%A Sharon Sela (sharonsela(AT)hotmail.com), May 24 2002

%E Edited by _Robert G. Wilson v_, May 26 2002

%E Corrected by _Vincenzo Librandi_, Mar 11 2014