login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329814
The smallest base b where the sum of the digits for the number n in the base b is the smallest, with 1 < b < n and a(1) = a(2) = 1.
1
1, 1, 2, 2, 2, 2, 6, 2, 3, 2, 10, 2, 12, 7, 14, 2, 2, 2, 18, 2, 20, 11, 22, 2, 5, 5, 3, 3, 28, 3, 30, 2, 2, 2, 34, 6, 6, 19, 38, 2, 40, 6, 42, 22, 44, 23, 46, 2, 7, 5, 50, 26, 52, 3, 54, 7, 56, 29, 58, 30, 60, 31, 62, 2, 2, 2, 66, 2, 68, 35, 70, 2, 72, 37, 74
OFFSET
1,3
COMMENTS
The smallest sum of digits corresponding to a(n) is equal to 2-A075802(n), i.e., it is 1 when n is 1 or a perfect power and 2 otherwise. - Giovanni Resta, Nov 22 2019
a(n)=n-1 if and only if n is in A088905 but not in A001597. a(n)<= n/2 if n is even. - Robert Israel, Dec 05 2019
LINKS
EXAMPLE
For n = 5:
n in base 2 = [1, 0, 1] -> digitSum(5, 2) = 2.
n in base 3 = [1, 2] -> digitSum(5, 3) = 3.
n in base 4 = [1, 1] -> digitSum(5, 4) = 2.
Base 2 has the smallest sum of the digits for n = 5 ->
therefore a(5) = 2.
For n = 7:
n in base 2 = [1, 1, 1] -> digitSum(7, 2) = 3.
n in base 3 = [2, 1] -> digitSum(7, 3) = 3.
n in base 4 = [1, 3] -> digitSum(7, 4) = 4.
n in base 5 = [1, 2] -> digitSum(7, 5) = 3.
n in base 6 = [1, 1] -> digitSum(7, 6) = 2.
Base 6 has the smallest sum of the digits for n = 7 ->
therefore a(7) = 6.
MAPLE
f:= proc(n) local F, t, d, bmin, s, r, b;
F:= ifactors(n)[2];
d:= igcd(seq(t[2], t=F));
if d > 1 then return mul(t[1]^(t[2]/d), t=F) fi;
F:= ifactors(n-1)[2];
d:= igcd(seq(t[2], t=F));
if d=1 then bmin:= n-1 else bmin:= mul(t[1]^(t[2]/d), t=F) fi;
for s in numtheory:-divisors(n) do
r:= n/s-1;
F:= ifactors(s)[2];
d:= igcd(seq(t[2], t=F));
b:= mul(t[1]^(t[2]/d), t=F);
if b < bmin and r = b^padic:-ordp(r, b) then bmin:= b fi
od;
bmin;
end proc:
map(f, [$1..100]); # Robert Israel, Dec 05 2019
MATHEMATICA
a[n_] := Block[{b=1, r=n, t}, Do[t = Plus @@ IntegerDigits[n, i]; If[t < r, r=t; b=i], {i, 2, n-1}]; b]; Array[a, 75] (* Giovanni Resta, Nov 22 2019 *)
PROG
(PARI) a(n)={my(best_b=1, best_dig_sum=n); if(n>1, for(b=2, n-1, dig_sum=sumdigits(n, b); if(best_dig_sum>dig_sum, best_dig_sum=dig_sum; best_b=b))); best_b};
CROSSREFS
KEYWORD
nonn,base,look
AUTHOR
Haris Ziko, Nov 21 2019
EXTENSIONS
More terms from Giovanni Resta, Nov 22 2019
STATUS
approved