OFFSET
1,2
COMMENTS
a(n) is the number of unique bijective functions from Z/nZ to itself induced by polynomials over Z/nZ.
LINKS
Kenneth G. Hawes, Table of n, a(n) for n = 1..456
Kenneth G. Hawes, SageMath program for generating the sequence
Kenneth G. Hawes, Additional terms including those with more than 1000 digits, n = 1..5000
G. Keller and F. R. Olson, Counting polynomial function (mod p^n), Duke Mathematical Journal, 35 (1968), 835-838.
FORMULA
a(n) = Product_{i=1..r} a(p_i^k_i) for n having the unique prime factorization n = Product_{i=1..r} p_i^k_i.
a(p^k) = p! if k=1, a(p^k) = p!*(p-1)^p*p^p if k=2, and a(p^k) = p!*(p-1)^p*p^(p+f(p,k)) if k>2, where f(p,k) = Sum_{i=3..k} A002034(p^i).
EXAMPLE
For n=3, since it is a prime number, a(3) = 3! = 6.
For n=4=2^2, a(4) = 2!*(2-1)^2*2^2 = 8.
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Kenneth G. Hawes, Nov 21 2019
STATUS
approved