login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164126
First differences of A006995.
3
1, 2, 2, 2, 2, 6, 2, 4, 6, 4, 2, 12, 6, 12, 2, 8, 12, 8, 6, 8, 12, 8, 2, 24, 12, 24, 6, 24, 12, 24, 2, 16, 24, 16, 12, 16, 24, 16, 6, 16, 24, 16, 12, 16, 24, 16, 2, 48, 24, 48, 12, 48, 24, 48, 6, 48, 24, 48, 12, 48, 24, 48, 2, 32, 48, 32, 24, 32, 48, 32, 12, 32, 48, 32, 24, 32, 48, 32, 6
OFFSET
1,2
COMMENTS
Contribution from Hieronymus Fischer, Feb 18 2012: (Start)
From the formula section it follows that a(2^m - 1 + 2^(m-1) - k) = a(2^m - 1 + k) for 0 <= k <= 2^(m-1), as well as a(2^m - 1 + 2^(m-1) - k) = 2 for k=0, 2^(m-1) and a(2^m - 1 + 2^(m-1) - k) = 6 for k=2^(m-2), hence, starting from positions n=2^m-1, the following 2^(m-1) terms form symmetric tuples limited on the left and on the right by a '2' and always having a '6' as the center element.
Example: for n = 15 = 2^4 - 1, we have the (2^3+1)-tuple (2,8,12,8,6,8,12,8,2).
Further on, since a(2^m - 1 + 2^(m-1) + k) = a(2^(m+1) - 1 - k) for 0 <= k <= 2^(m-1) an analogous statement holds true for starting positions n = 2^m + 2^(m-1) - 1.
Example: for n = 23 = 2^4 + 2^3 - 1, we find the (2^3+1)-tuple (2,24,12,24,6,24,12,24,2).
If we group the sequence terms according to the value of m=floor(log_2(n)), writing those terms together in separate lines and opening each new line for n >= 2^m + 2^(m-1), then a kind of a 'logarithmic shaped' cone end will be formed, where both the symmetry and the calculation rules become obvious. The first 63 terms are depicted below:
1
2
2
2 2
6 2
4 6 4 2
12 6 12 2
8 12 8 6 8 12 8 2
24 12 24 6 24 12 24 2
16 24 16 12 16 24 16 6 16 24 16 12 16 24 16 2
48 24 48 12 48 24 48 6 48 24 48 12 48 24 48 2
.
(End)
Decremented by 1, also the sequence of run lengths of 0's in A178225. - Hieronymus Fischer, Feb 19 2012
LINKS
FORMULA
a(n) = A006995(n+1) - A006995(n).
Contribution from Hieronymus Fischer, Feb 17 2012: (Start)
a(4*2^m - 1) = a(6*2^m - 1) = 2;
a(5*2^m - 1) = a(7*2^m - 1) = 6 (for m > 0);
Let m = floor(log_2(n)), then
Case 1: a(n) = 2, if n+1 = 2^(m+1) or n+1 = 3*2^(m-1);
Case 2: a(n) = 2^(m-1), if n = 0(mod 2) and n < 3*2^(m-1);
Case 3: a(n) = 3*2^(m-1), if n = 0(mod 2) and n >= 3*2^(m-1);
Case 4: a(n) = 3*2^(m-1)/gcd(n+1-2^m, 2^m), otherwise.
Cases 2-4 above can be combined as
Case 2': a(n) = (2 - (-1)^(n-(n-1)*floor(2*n/(3*2^m))))*2^(m-1)/gcd(n+1-2^m, 2^m).
Recursion formula:
Let m = floor(log_2(n)); then
Case 1: a(n) = 2*a(n-2^(m-1)), if 2^m <= n < 2^m + 2^(m-2) - 1;
Case 2: a(n) = 6, if n = 2^m + 2^(m-2) - 1;
Case 3: a(n) = a(n-2^(m-2)), if 2^m + 2^(m-2) <= n < 2^m + 2^(m-1) - 1;
Case 4: a(n) = 2, if n = 2^m + 2^(m-1) - 1;
Case 5: a(n) = (2 + (-1)^n)*a(n-2^(m-1)), otherwise (which means 2^m + 2^(m-1) <= n < 2^(m+1)).
(End)
EXAMPLE
a(1) = A006995(2) - A006995(1) = 1 - 0 = 1.
MATHEMATICA
f[n_]:=FromDigits[RealDigits[n, 2][[1]]]==FromDigits[Reverse[RealDigits[n, 2][[1]]]]; a=1; lst={}; Do[If[f[n], AppendTo[lst, n-a]; a=n], {n, 1, 8!, 1}]; lst
PROG
(Python)
def A164126(n):
if n == 1: return 1
m = (a:=1<<(l:=n.bit_length()-2))|(n&a-1)
k = (m<<l+1)+int(bin(m)[-1:1:-1]or'0', 2) if a&n else (m<<l)+int(bin(m)[-2:1:-1]or'0', 2)
m = (a:=1<<(l:=(n+1).bit_length()-2))|(n+1&a-1)
return ((m<<l+1)+int(bin(m)[-1:1:-1]or'0', 2) if a&n+1 else (m<<l)+int(bin(m)[-2:1:-1]or'0', 2))-k # Chai Wah Wu, Jun 11 2024
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
EXTENSIONS
a(1) changed to 1 and keyword:base added by R. J. Mathar, Aug 26 2009
STATUS
approved