OFFSET
1,1
LINKS
Stefano Spezia, First 150 rows of the triangle, flattened.
FORMULA
T(n,m) = binomial(n + m - 1, 2*m) + binomial(2*n - m - 2, 2*(n - m - 1)).
From Stefano Spezia, Dec 26 2018: (Start)
Sum_{m=0..n-1} T(n,m) = A052995(n).
(End)
EXAMPLE
n\m| 0 1 2 3 4 5 6 7 8
---+---------------------------------------------------
1 | 2
2 | 2 2
3 | 2 6 2
4 | 2 11 11 2
5 | 2 17 30 17 2
6 | 2 24 63 63 24 2
7 | 2 32 115 168 115 32 2
8 | 2 41 192 375 375 192 41 2
9 | 2 51 301 748 990 748 301 51 2
MAPLE
a := (n, m) -> binomial(n+m-1, 2*m)+binomial(2*n-m-2, 2*(n-m-1)): seq(seq(a(n, m), m = 0 .. n-1), n = 1 .. 10) # Stefano Spezia, Dec 26 2018
MATHEMATICA
Flatten[Table[Table[Binomial[n + m - 1, 2*m] + Binomial[2*n - m - 2, 2*(n - m - 1)], {m, 0, n - 1}], {n, 1, 10}]]
PROG
(GAP) Flat(List([1..10], n->List([0..n-1], m->Binomial(n + m - 1, 2*m) + Binomial(2*n - m - 2, 2*(n - m - 1))))); # Stefano Spezia, Dec 26 2018
(PARI) T(n, m) = binomial(n+m-1, 2*m)+binomial(2*n-m-2, 2*(n-m-1)); \\ Stefano Spezia, Dec 26 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 14 2009
EXTENSIONS
Edited by Stefano Spezia, Dec 26 2018
STATUS
approved