login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156717
Triangle read by rows: T(n,m) = binomial(n + m - 1, 2*m) + binomial(2*n - m - 2, 2*(n - m - 1)).
1
2, 2, 2, 2, 6, 2, 2, 11, 11, 2, 2, 17, 30, 17, 2, 2, 24, 63, 63, 24, 2, 2, 32, 115, 168, 115, 32, 2, 2, 41, 192, 375, 375, 192, 41, 2, 2, 51, 301, 748, 990, 748, 301, 51, 2, 2, 62, 450, 1379, 2288, 2288, 1379, 450, 62, 2, 2, 74, 648, 2396, 4823, 6006, 4823, 2396, 648, 74, 2
OFFSET
1,1
FORMULA
T(n,m) = binomial(n + m - 1, 2*m) + binomial(2*n - m - 2, 2*(n - m - 1)).
From Stefano Spezia, Dec 26 2018: (Start)
T(n,m) = A007318(n + m - 1, 2*m) + A007318(2*n - m - 2, 2*(n - m - 1)).
Sum_{m=0..n-1} T(n,m) = A052995(n).
(End)
EXAMPLE
n\m| 0 1 2 3 4 5 6 7 8
---+---------------------------------------------------
1 | 2
2 | 2 2
3 | 2 6 2
4 | 2 11 11 2
5 | 2 17 30 17 2
6 | 2 24 63 63 24 2
7 | 2 32 115 168 115 32 2
8 | 2 41 192 375 375 192 41 2
9 | 2 51 301 748 990 748 301 51 2
MAPLE
a := (n, m) -> binomial(n+m-1, 2*m)+binomial(2*n-m-2, 2*(n-m-1)): seq(seq(a(n, m), m = 0 .. n-1), n = 1 .. 10) # Stefano Spezia, Dec 26 2018
MATHEMATICA
Flatten[Table[Table[Binomial[n + m - 1, 2*m] + Binomial[2*n - m - 2, 2*(n - m - 1)], {m, 0, n - 1}], {n, 1, 10}]]
PROG
(GAP) Flat(List([1..10], n->List([0..n-1], m->Binomial(n + m - 1, 2*m) + Binomial(2*n - m - 2, 2*(n - m - 1))))); # Stefano Spezia, Dec 26 2018
(PARI) T(n, m) = binomial(n+m-1, 2*m)+binomial(2*n-m-2, 2*(n-m-1)); \\ Stefano Spezia, Dec 26 2018
CROSSREFS
Cf. A007318, A052995 (row sums).
Sequence in context: A073124 A278260 A070877 * A198889 A329814 A130754
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 14 2009
EXTENSIONS
Edited by Stefano Spezia, Dec 26 2018
STATUS
approved