login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,m) = binomial(n + m - 1, 2*m) + binomial(2*n - m - 2, 2*(n - m - 1)).
1

%I #24 Dec 26 2018 05:39:03

%S 2,2,2,2,6,2,2,11,11,2,2,17,30,17,2,2,24,63,63,24,2,2,32,115,168,115,

%T 32,2,2,41,192,375,375,192,41,2,2,51,301,748,990,748,301,51,2,2,62,

%U 450,1379,2288,2288,1379,450,62,2,2,74,648,2396,4823,6006,4823,2396,648,74,2

%N Triangle read by rows: T(n,m) = binomial(n + m - 1, 2*m) + binomial(2*n - m - 2, 2*(n - m - 1)).

%H Stefano Spezia, <a href="/A156717/b156717.txt">First 150 rows of the triangle, flattened.</a>

%F T(n,m) = binomial(n + m - 1, 2*m) + binomial(2*n - m - 2, 2*(n - m - 1)).

%F From _Stefano Spezia_, Dec 26 2018: (Start)

%F T(n,m) = A007318(n + m - 1, 2*m) + A007318(2*n - m - 2, 2*(n - m - 1)).

%F Sum_{m=0..n-1} T(n,m) = A052995(n).

%F (End)

%e n\m| 0 1 2 3 4 5 6 7 8

%e ---+---------------------------------------------------

%e 1 | 2

%e 2 | 2 2

%e 3 | 2 6 2

%e 4 | 2 11 11 2

%e 5 | 2 17 30 17 2

%e 6 | 2 24 63 63 24 2

%e 7 | 2 32 115 168 115 32 2

%e 8 | 2 41 192 375 375 192 41 2

%e 9 | 2 51 301 748 990 748 301 51 2

%p a := (n, m) -> binomial(n+m-1,2*m)+binomial(2*n-m-2,2*(n-m-1)): seq(seq(a(n, m), m = 0 .. n-1), n = 1 .. 10) # _Stefano Spezia_, Dec 26 2018

%t Flatten[Table[Table[Binomial[n + m - 1, 2*m] + Binomial[2*n - m - 2, 2*(n - m - 1)], {m, 0, n - 1}], {n, 1, 10}]]

%o (GAP) Flat(List([1..10], n->List([0..n-1], m->Binomial(n + m - 1, 2*m) + Binomial(2*n - m - 2, 2*(n - m - 1))))); # _Stefano Spezia_, Dec 26 2018

%o (PARI) T(n,m) = binomial(n+m-1,2*m)+binomial(2*n-m-2,2*(n-m-1)); \\ _Stefano Spezia_, Dec 26 2018

%Y Cf. A007318, A052995 (row sums).

%K nonn,tabl

%O 1,1

%A _Roger L. Bagula_, Feb 14 2009

%E Edited by _Stefano Spezia_, Dec 26 2018