login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The smallest base b where the sum of the digits for the number n in the base b is the smallest, with 1 < b < n and a(1) = a(2) = 1.
1

%I #28 Dec 05 2019 17:42:36

%S 1,1,2,2,2,2,6,2,3,2,10,2,12,7,14,2,2,2,18,2,20,11,22,2,5,5,3,3,28,3,

%T 30,2,2,2,34,6,6,19,38,2,40,6,42,22,44,23,46,2,7,5,50,26,52,3,54,7,56,

%U 29,58,30,60,31,62,2,2,2,66,2,68,35,70,2,72,37,74

%N The smallest base b where the sum of the digits for the number n in the base b is the smallest, with 1 < b < n and a(1) = a(2) = 1.

%C The smallest sum of digits corresponding to a(n) is equal to 2-A075802(n), i.e., it is 1 when n is 1 or a perfect power and 2 otherwise. - _Giovanni Resta_, Nov 22 2019

%C a(n)=n-1 if and only if n is in A088905 but not in A001597. a(n)<= n/2 if n is even. - _Robert Israel_, Dec 05 2019

%H Robert Israel, <a href="/A329814/b329814.txt">Table of n, a(n) for n = 1..10000</a>

%e For n = 5:

%e n in base 2 = [1, 0, 1] -> digitSum(5, 2) = 2.

%e n in base 3 = [1, 2] -> digitSum(5, 3) = 3.

%e n in base 4 = [1, 1] -> digitSum(5, 4) = 2.

%e Base 2 has the smallest sum of the digits for n = 5 ->

%e therefore a(5) = 2.

%e For n = 7:

%e n in base 2 = [1, 1, 1] -> digitSum(7, 2) = 3.

%e n in base 3 = [2, 1] -> digitSum(7, 3) = 3.

%e n in base 4 = [1, 3] -> digitSum(7, 4) = 4.

%e n in base 5 = [1, 2] -> digitSum(7, 5) = 3.

%e n in base 6 = [1, 1] -> digitSum(7, 6) = 2.

%e Base 6 has the smallest sum of the digits for n = 7 ->

%e therefore a(7) = 6.

%p f:= proc(n) local F, t,d,bmin,s,r,b;

%p F:= ifactors(n)[2];

%p d:= igcd(seq(t[2],t=F));

%p if d > 1 then return mul(t[1]^(t[2]/d),t=F) fi;

%p F:= ifactors(n-1)[2];

%p d:= igcd(seq(t[2],t=F));

%p if d=1 then bmin:= n-1 else bmin:= mul(t[1]^(t[2]/d),t=F) fi;

%p for s in numtheory:-divisors(n) do

%p r:= n/s-1;

%p F:= ifactors(s)[2];

%p d:= igcd(seq(t[2],t=F));

%p b:= mul(t[1]^(t[2]/d),t=F);

%p if b < bmin and r = b^padic:-ordp(r,b) then bmin:= b fi

%p od;

%p bmin;

%p end proc:

%p map(f, [$1..100]); # _Robert Israel_, Dec 05 2019

%t a[n_] := Block[{b=1, r=n, t}, Do[t = Plus @@ IntegerDigits[n, i]; If[t < r, r=t; b=i], {i, 2, n-1}]; b]; Array[a, 75] (* _Giovanni Resta_, Nov 22 2019 *)

%o (PARI) a(n)={my(best_b=1, best_dig_sum=n); if(n>1, for(b=2, n-1, dig_sum=sumdigits(n, b); if(best_dig_sum>dig_sum, best_dig_sum=dig_sum; best_b=b))); best_b};

%Y Cf. A001597, A075802, A088905.

%K nonn,base,look

%O 1,3

%A _Haris Ziko_, Nov 21 2019

%E More terms from _Giovanni Resta_, Nov 22 2019