login
A321335
Expansion of 1/(1 - x) * Product_{k>=0} 1/(1 - x^(2^k))^(2^(k+1)).
3
1, 3, 10, 22, 57, 115, 248, 456, 906, 1598, 2956, 4980, 8802, 14422, 24440, 38856, 63881, 99515, 159106, 242654, 379609, 569971, 873696, 1290784, 1945912, 2839080, 4213712, 6069808, 8890264, 12675080, 18334048, 25867168, 37011210, 51766174, 73308548, 101638332, 142626458
OFFSET
0,2
FORMULA
G.f.: A(x) satisfies A(x) = ((1 + x) * A(x^2))^2 / (1 - x), with A(0) = 1.
a(n) = A073709(2*n) = A073709(2*n+1) for n >= 0.
CROSSREFS
Partial sums of A073710.
Sequence in context: A299336 A222629 A070880 * A171686 A027164 A292921
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 05 2018
STATUS
approved