login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070563
a(n) = 0 if 3 divides the Ramanujan number tau(n) (A000594(n)), otherwise 1.
5
1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
OFFSET
1,1
COMMENTS
Multiplicative because A000594 is. Conjecture: a(3^k) = 0, if p == 1 mod 3, a(p^2k) = 0 and a(p^(2k+1)) = 1, if p == -1 mod 3, a(p^2k) = 1 and a(p^(2k+1)) = 0. - Christian G. Bower, Jun 10 2005
From Antti Karttunen, Jul 03 2024: (Start)
The above conjecture is not correct. The first counterexample occurs at n = 2401 = 7^4. My improved conjecture is that this is actually a characteristic function of nonmultiples of 3 whose sum of divisors is also a nonmultiple of 3, that is, having a following multiplicative formula: a(3^k) = 0, if p == 1 mod 3, a(p^e) = 1 if e != 2 (mod 3), otherwise 0, and if p == -1 mod 3, a(p^2k) = 1 and a(p^(2k+1)) = 0. This conjecture has now been proved correct by Seiichi Manyama.
Bower's formula is now submitted as A374053.
(End)
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..131072 (first 100000 terms from Antti Karttunen)
P. Moree and H. J. J. te Riele, The hexagonal versus the square lattice, arXiv:math/0204332 [math.NT], 2002.
P. Moree and H. J. J. te Riele, The hexagonal versus the square lattice, Math. Comp. 73 (2004), no. 245, 451-473.
FORMULA
a(n) = A011655(n) * A353815(n), conjectured by Antti Karttunen, proved by Seiichi Manyama, Jul 03 2024
MATHEMATICA
a[n_] := Boole[!Divisible[RamanujanTau[n], 3]]; Array[a, 92] (* Jean-François Alcover, Jul 05 2017 *)
PROG
(PARI) A070563(n) = !!(ramanujantau(n)%3); \\ Antti Karttunen, Jul 02 2024
(PARI) A070563(n) = ((n%3) && (sigma(n)%3)); \\ Antti Karttunen, Jul 03 2024
(PARI) A070563(n) = { my(f=factor(n)); prod(i=1, #f~, if(3==f[i, 1], 0, 1==(f[i, 1]%3), 2!=(f[i, 2]%3), (1+f[i, 2])%2)); }; \\ Antti Karttunen, Jul 03 2024
CROSSREFS
Characteristic function of A374135, nonmultiples of 3 whose sum of divisors is also a nonmultiple of 3.
Sequence in context: A014054 A014099 A037011 * A374053 A024692 A373604
KEYWORD
nonn,mult
AUTHOR
N. J. A. Sloane, May 07 2002
STATUS
approved