login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A353815
a(n) = 1 if sigma(n) is not a multiple of 3, otherwise 0.
8
1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0
OFFSET
1
FORMULA
a(n) = A011655(A000203(n)).
a(n) = [A074941(n) > 0], where [ ] is the Iverson bracket.
a(n) <= A353816(n).
Multiplicative with a(3^e) = 1, and if p == 1 (mod 3), a(p^e) = 0 if e == 2 (mod 3), otherwise 1, and if p == 2 (mod 3), then a(p^e) = 1 if e is even, otherwise 0. - Antti Karttunen, Jul 03 2024
MATHEMATICA
a[n_] := If[!Divisible[DivisorSigma[1, n], 3], 1, 0]; Array[a, 100] (* Amiram Eldar, May 15 2022 *)
PROG
(PARI) A353815(n) = (0!=(sigma(n)%3));
(PARI) A353815(n) = { my(f=factor(n)); prod(i=1, #f~, if(3==f[i, 1], 1, 1==(f[i, 1]%3), 2!=(f[i, 2]%3), (1+f[i, 2])%2)); }; \\ Antti Karttunen, Jul 03 2024
CROSSREFS
Characteristic function of A329963.
Sequence in context: A266502 A075438 A118174 * A156258 A132138 A141212
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, May 15 2022
EXTENSIONS
Keyword:mult added and incorrect comment removed by Antti Karttunen, Jul 03 2024
STATUS
approved