Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Jul 04 2024 18:27:17
%S 1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,
%T 0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,
%U 0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0
%N a(n) = 0 if 3 divides the Ramanujan number tau(n) (A000594(n)), otherwise 1.
%C Multiplicative because A000594 is. Conjecture: a(3^k) = 0, if p == 1 mod 3, a(p^2k) = 0 and a(p^(2k+1)) = 1, if p == -1 mod 3, a(p^2k) = 1 and a(p^(2k+1)) = 0. - _Christian G. Bower_, Jun 10 2005
%C From _Antti Karttunen_, Jul 03 2024: (Start)
%C The above conjecture is not correct. The first counterexample occurs at n = 2401 = 7^4. My improved conjecture is that this is actually a characteristic function of nonmultiples of 3 whose sum of divisors is also a nonmultiple of 3, that is, having a following multiplicative formula: a(3^k) = 0, if p == 1 mod 3, a(p^e) = 1 if e != 2 (mod 3), otherwise 0, and if p == -1 mod 3, a(p^2k) = 1 and a(p^(2k+1)) = 0. This conjecture has now been proved correct by _Seiichi Manyama_.
%C Bower's formula is now submitted as A374053.
%C (End)
%H Michael De Vlieger, <a href="/A070563/b070563.txt">Table of n, a(n) for n = 1..131072</a> (first 100000 terms from Antti Karttunen)
%H P. Moree and H. J. J. te Riele, <a href="http://arXiv.org/abs/math.NT/0204332">The hexagonal versus the square lattice</a>, arXiv:math/0204332 [math.NT], 2002.
%H P. Moree and H. J. J. te Riele, <a href="http://dx.doi.org/10.1090/S0025-5718-03-01556-4">The hexagonal versus the square lattice</a>, Math. Comp. 73 (2004), no. 245, 451-473.
%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%F a(n) = A011655(n) * A353815(n), conjectured by _Antti Karttunen_, proved by _Seiichi Manyama_, Jul 03 2024
%t a[n_] := Boole[!Divisible[RamanujanTau[n], 3]]; Array[a, 92] (* _Jean-François Alcover_, Jul 05 2017 *)
%o (PARI) A070563(n) = !!(ramanujantau(n)%3); \\ _Antti Karttunen_, Jul 02 2024
%o (PARI) A070563(n) = ((n%3) && (sigma(n)%3)); \\ _Antti Karttunen_, Jul 03 2024
%o (PARI) A070563(n) = { my(f=factor(n)); prod(i=1, #f~, if(3==f[i, 1], 0, 1==(f[i, 1]%3), 2!=(f[i, 2]%3), (1+f[i, 2])%2)); }; \\ _Antti Karttunen_, Jul 03 2024
%Y Characteristic function of A374135, nonmultiples of 3 whose sum of divisors is also a nonmultiple of 3.
%Y Cf. A000203, A000594, A011655, A070564, A126825, A353815, A374053.
%K nonn,mult
%O 1,1
%A _N. J. A. Sloane_, May 07 2002