login
A024692
a(n) = s(1)s(n) + s(2)s(n-1) + ... + s(k)s(n+1-k), where k = floor((n+1)/2), s = A023533.
10
1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1
OFFSET
1,139
LINKS
FORMULA
a(n) = Sum_{k=1..floor((n+1)/2)} A023533(k)*A023533(n-k+1).
MATHEMATICA
A023533[n_]:= A023533[n]= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3] != n, 0, 1];
A024692[n_]:= A024692[n]= Sum[A023533[k]*A023533[n+1-k], {k, Floor[(n+1)/2]}];
Table[A024692[n], {n, 100}] (* G. C. Greubel, Jul 14 2022 *)
PROG
(Magma)
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
[(&+[A023533(k)*A023533(n-k+1): k in [1..Floor((n+1)/2)]]): n in [1..100]]; // G. C. Greubel, Jul 14 2022
(SageMath)
def A023533(n):
if binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n: return 0
else: return 1
[sum(A023533(k)*A023533(n-k+1) for k in (1..((n+1)//2))) for n in (1..100)] # G. C. Greubel, Jul 14 2022
CROSSREFS
Cf. A023533.
Sequence in context: A037011 A070563 A374053 * A373604 A079978 A164704
KEYWORD
nonn
STATUS
approved