login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024693
a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023533, t = A014306.
2
0, 1, 1, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 4
OFFSET
1,8
LINKS
FORMULA
a(n) = Sum_{k=1..floor((n+1)/2)} A023533(k)*A014306(n+1-k).
a(n) = Sum_{k=1..floor((n+1)/2)} A023533(k)*(1 - A023533(n-k+1)). - G. C. Greubel, Jul 15 2022
MATHEMATICA
A023533[n_]:= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3] != n, 0, 1];
A024693[n_]:= A024693[n]= Sum[(1-A023533[n-k+2])*A023533[k], {k, Floor[(n+1)/2]}];
Table[A024693[n], {n, 0, 100}] (* G. C. Greubel, Jul 15 2022 *)
PROG
(Magma)
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
[(&+[A023533(k)*(1-A023533(n+1-k)): k in [1..Floor((n+1)/2)]]): n in [1..100]]; // G. C. Greubel, Jul 15 2022
(SageMath)
def A023533(n):
if binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n: return 0
else: return 1
[sum(A023533(k)*(1-A023533(n-k+1)) for k in (1..((n+1)//2))) for n in (1..100)] # G. C. Greubel, Jul 15 2022
CROSSREFS
Sequence in context: A158209 A234538 A119646 * A025126 A129706 A379672
KEYWORD
nonn
STATUS
approved