OFFSET
0,2
COMMENTS
FORMULA
G.f.=G(t,z)=H(t,1,z), where H(t,x,z)=1+z+xzH(t,x,z)+txz^2*H(t,tx,z). Row generating polynomials P[n] are given by P[n](t)=Q[n](t,1), where Q[0]=1, Q[1]=1+x, Q[n](t,x)=xQ[n-1](t,x)+txQ[n-2](t,tx) for n>=2.
EXAMPLE
T(5,3)=4 because we have 11101, 10101, 01110 and 01010.
Triangle starts:
1;
2;
2,1;
2,2,1;
2,2,2,2;
2,2,2,4,2,1;
2,2,2,4,4,4,2,1;
MAPLE
Q[0]:=1: Q[1]:=1+x: for n from 2 to 12 do Q[n]:=expand(x*Q[n-1]+t*x*subs(x=t*x, Q[n-2])) od: for n from 0 to 15 do P[n]:=sort(subs(x=1, Q[n])) od: for n from 0 to 12 do seq(coeff(P[n], t, j), j=0..floor(n*(n+1)/6)) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 12 2007
STATUS
approved