login
A129706
Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k inversions (n>=0, 0<=k<=floor(n(n+1)/6)). A Fibonacci binary word is a binary word having no 00 subword.
1
1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 4, 2, 1, 2, 2, 2, 4, 4, 4, 2, 1, 2, 2, 2, 4, 4, 6, 6, 4, 2, 2, 2, 2, 2, 4, 4, 6, 8, 8, 6, 6, 4, 2, 1, 2, 2, 2, 4, 4, 6, 8, 10, 10, 10, 10, 8, 6, 4, 2, 1, 2, 2, 2, 4, 4, 6, 8, 10, 12, 14, 14, 14, 14, 12, 10, 8, 4, 2, 2, 2, 2, 2, 4, 4, 6, 8, 10, 12, 16, 18, 18, 20
OFFSET
0,2
COMMENTS
Row n has 1+floor(n(n+1)/6) terms. Row sums are the Fibonacci numbers (A000045). Sum(k*T(n,k), k>=0)=A129707(n).
FORMULA
G.f.=G(t,z)=H(t,1,z), where H(t,x,z)=1+z+xzH(t,x,z)+txz^2*H(t,tx,z). Row generating polynomials P[n] are given by P[n](t)=Q[n](t,1), where Q[0]=1, Q[1]=1+x, Q[n](t,x)=xQ[n-1](t,x)+txQ[n-2](t,tx) for n>=2.
EXAMPLE
T(5,3)=4 because we have 11101, 10101, 01110 and 01010.
Triangle starts:
1;
2;
2,1;
2,2,1;
2,2,2,2;
2,2,2,4,2,1;
2,2,2,4,4,4,2,1;
MAPLE
Q[0]:=1: Q[1]:=1+x: for n from 2 to 12 do Q[n]:=expand(x*Q[n-1]+t*x*subs(x=t*x, Q[n-2])) od: for n from 0 to 15 do P[n]:=sort(subs(x=1, Q[n])) od: for n from 0 to 12 do seq(coeff(P[n], t, j), j=0..floor(n*(n+1)/6)) od; # yields sequence in triangular form
CROSSREFS
Sequence in context: A119646 A024693 A025126 * A160384 A178305 A338621
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 12 2007
STATUS
approved