login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129707
Number of inversions in all Fibonacci binary words of length n.
8
0, 0, 1, 4, 12, 31, 73, 162, 344, 707, 1416, 2778, 5358, 10188, 19139, 35582, 65556, 119825, 217487, 392286, 703618, 1255669, 2230608, 3946020, 6954060, 12212280, 21377365, 37309288, 64935132, 112726771, 195224773, 337343034, 581700476
OFFSET
0,4
COMMENTS
A Fibonacci binary word is a binary word having no 00 subword.
LINKS
Kálmán Liptai, László Németh, Tamás Szakács, and László Szalay, On certain Fibonacci representations, arXiv:2403.15053 [math.NT], 2024. See p. 2.
Tamás Szakács, Linear recursive sequences and factorials, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 2.
FORMULA
a(n) = Sum_{k>=0} k*A129706(n,k).
G.f.: z^2*(1+z)/(1-z-z^2)^3.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) + F(n), a(0)=a(1)=0, a(2)=1, a(3)=4.
a(n-3) = ((5*n^2 - 37*n + 50)*F(n-1) + 4*(n-1)*F(n))/50 = (-1)^n*A055243(-n). - Peter Bala, Oct 25 2007
a(n) = A001628(n-3) + A001628(n-2). - R. J. Mathar, Dec 07 2011
a(n+1) = A123585(n+2,n). - Philippe Deléham, Dec 18 2011
a(n) = Sum_{k=floor((n-1)/2)..n-1} k*(k+1)/2*C(k,n-k-1). - Vladimir Kruchinin, Sep 17 2020
EXAMPLE
a(3)=4 because the Fibonacci words 110,111,101,010,011 have a total of 2 + 0 + 1 + 1 + 0 = 4 inversions.
MAPLE
with(combinat): a[0]:=0: a[1]:=0: a[2]:=1: a[3]:=4: for n from 4 to 40 do a[n]:=2*a[n-1]+a[n-2]-2*a[n-3]-a[n-4]+fibonacci(n) od: seq(a[n], n=0..40);
MATHEMATICA
CoefficientList[Series[x^2*(1 + x)/(1 - x - x^2)^3, {x, 0, 50}], x] (* G. C. Greubel, Mar 04 2017 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0], Vec(x^2*(1 + x)/(1 - x - x^2)^3)) \\ G. C. Greubel, Mar 04 2017
(Maxima)
a(n) = sum(k*(k+1)*binomial(k, n-k-1), k, floor((n-1)/2), n-1)/2; /* Vladimir Kruchinin, Sep 17 2020 */
CROSSREFS
Cf. A129706.
Cf. A055243.
Sequence in context: A037255 A027658 A001982 * A320545 A232580 A133546
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 12 2007
STATUS
approved