login
A320545
Number of partitions of n into parts of exactly three sorts which are introduced in ascending order such that sorts of adjacent parts are different.
4
1, 4, 12, 31, 73, 165, 357, 760, 1582, 3270, 6678, 13589, 27482, 55468, 111588, 224259, 449908, 902106, 1807173, 3619162, 7244557, 14499238, 29011551, 58044194, 116115782, 232275383, 464607730, 929306306, 1858730674, 3717648658, 7435541392, 14871467784
OFFSET
3,2
LINKS
FORMULA
a(n) ~ 2^(n-2) / QPochhammer[1/2]. - Vaclav Kotesovec, Oct 25 2018
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
end:
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
a:= n-> (k-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k))(3):
seq(a(n), n=3..40);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^(n - 1), b[n, i - 1, k] + If[i > n, 0, k b[n - i, i, k]]];
A[n_, k_] := If[n == 0, 1, If[k < 2, k, k b[n, n, k - 1]]];
a[n_] := With[{k = 3}, Sum[A[n, k - i] (-1)^i/(i! (k - i)!), {i, 0, k}]];
a /@ Range[3, 40] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A262495.
Sequence in context: A027658 A001982 A129707 * A232580 A133546 A190376
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 15 2018
STATUS
approved