login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of inversions in all Fibonacci binary words of length n.
8

%I #37 Nov 14 2024 15:18:24

%S 0,0,1,4,12,31,73,162,344,707,1416,2778,5358,10188,19139,35582,65556,

%T 119825,217487,392286,703618,1255669,2230608,3946020,6954060,12212280,

%U 21377365,37309288,64935132,112726771,195224773,337343034,581700476

%N Number of inversions in all Fibonacci binary words of length n.

%C A Fibonacci binary word is a binary word having no 00 subword.

%H Michael De Vlieger, <a href="/A129707/b129707.txt">Table of n, a(n) for n = 0..4754</a>

%H Kálmán Liptai, László Németh, Tamás Szakács, and László Szalay, <a href="https://arxiv.org/abs/2403.15053">On certain Fibonacci representations</a>, arXiv:2403.15053 [math.NT], 2024. See p. 2.

%H Tamás Szakács, <a href="https://hdl.handle.net/2437/381856">Linear recursive sequences and factorials</a>, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 2.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-5,0,3,1).

%F a(n) = Sum_{k>=0} k*A129706(n,k).

%F G.f.: z^2*(1+z)/(1-z-z^2)^3.

%F a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) + F(n), a(0)=a(1)=0, a(2)=1, a(3)=4.

%F a(n-3) = ((5*n^2 - 37*n + 50)*F(n-1) + 4*(n-1)*F(n))/50 = (-1)^n*A055243(-n). - _Peter Bala_, Oct 25 2007

%F a(n) = A001628(n-3) + A001628(n-2). - _R. J. Mathar_, Dec 07 2011

%F a(n+1) = A123585(n+2,n). - _Philippe Deléham_, Dec 18 2011

%F a(n) = Sum_{k=floor((n-1)/2)..n-1} k*(k+1)/2*C(k,n-k-1). - _Vladimir Kruchinin_, Sep 17 2020

%e a(3)=4 because the Fibonacci words 110,111,101,010,011 have a total of 2 + 0 + 1 + 1 + 0 = 4 inversions.

%p with(combinat): a[0]:=0: a[1]:=0: a[2]:=1: a[3]:=4: for n from 4 to 40 do a[n]:=2*a[n-1]+a[n-2]-2*a[n-3]-a[n-4]+fibonacci(n) od: seq(a[n],n=0..40);

%t CoefficientList[Series[x^2*(1 + x)/(1 - x - x^2)^3, {x,0,50}], x] (* _G. C. Greubel_, Mar 04 2017 *)

%o (PARI) x='x+O('x^50); concat([0,0], Vec(x^2*(1 + x)/(1 - x - x^2)^3)) \\ _G. C. Greubel_, Mar 04 2017

%o (Maxima)

%o a(n) = sum(k*(k+1)*binomial(k,n-k-1),k,floor((n-1)/2),n-1)/2; /* _Vladimir Kruchinin_, Sep 17 2020 */

%Y Cf. A129706.

%Y Cf. A055243.

%K nonn,easy

%O 0,4

%A _Emeric Deutsch_, May 12 2007