login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025126
a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A023533, t = A014306.
1
1, 1, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6
OFFSET
1,7
LINKS
MATHEMATICA
b[j_]:= b[j]= Sum[KroneckerDelta[j, Binomial[m+2, 3]], {m, 0, 15}];
A025126[n_]:= A025126[n]= Sum[(1-b[j+1])*b[n-j+1], {j, Floor[(n+2)/2], n}];
Table[A025126[n], {n, 130}] (* G. C. Greubel, Sep 14 2022 *)
PROG
(Magma)
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
A025126:= func< n | (&+[(1-A023533(n+2-k))*A023533(k): k in [1..Floor((n+1)/2)]]) >;
[A025126(n): n in [1..130]]; // G. C. Greubel, Sep 14 2022
(SageMath)
@CachedFunction
def b(j): return sum(bool(j==binomial(m+2, 3)) for m in (0..15))
@CachedFunction
def A025126(n): return sum((1-b(j+1))*b(n-j+1) for j in (((n+2)//2)..n))
[A025126(n) for n in (1..130)] # G. C. Greubel, Sep 14 2022
CROSSREFS
Cf. A024693. [From R. J. Mathar, Oct 23 2008]
Sequence in context: A234538 A119646 A024693 * A129706 A379672 A160384
KEYWORD
nonn
STATUS
approved