Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #9 Sep 15 2022 06:24:20
%S 1,1,0,1,1,1,2,2,1,2,2,1,2,2,2,2,2,2,2,3,3,2,3,3,3,3,3,2,3,3,3,3,3,2,
%T 3,3,2,3,4,4,4,4,3,4,4,4,4,4,4,4,4,4,3,4,3,4,4,3,4,4,4,4,4,3,4,4,4,4,
%U 5,5,5,5,5,4,5,5,5,5,5,5,5,5,4,5,5,4,5,5,4,5,5,4,5,5,5,5,5,5,5,5,5,4,5,5,5,5,5,5,5,5,6
%N a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A023533, t = A014306.
%H G. C. Greubel, <a href="/A025126/b025126.txt">Table of n, a(n) for n = 1..5000</a>
%t b[j_]:= b[j]= Sum[KroneckerDelta[j, Binomial[m+2,3]], {m,0,15}];
%t A025126[n_]:= A025126[n]= Sum[(1-b[j+1])*b[n-j+1], {j, Floor[(n+2)/2], n}];
%t Table[A025126[n], {n,130}] (* _G. C. Greubel_, Sep 14 2022 *)
%o (Magma)
%o A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
%o A025126:= func< n | (&+[(1-A023533(n+2-k))*A023533(k): k in [1..Floor((n+1)/2)]]) >;
%o [A025126(n): n in [1..130]]; // _G. C. Greubel_, Sep 14 2022
%o (SageMath)
%o @CachedFunction
%o def b(j): return sum(bool(j==binomial(m+2,3)) for m in (0..15))
%o @CachedFunction
%o def A025126(n): return sum((1-b(j+1))*b(n-j+1) for j in (((n+2)//2)..n))
%o [A025126(n) for n in (1..130)] # _G. C. Greubel_, Sep 14 2022
%Y Cf. A014306, A023533.
%Y Cf. A024693. [From _R. J. Mathar_, Oct 23 2008]
%K nonn
%O 1,7
%A _Clark Kimberling_