The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025125 a(n) = s(1)*s(n) + s(2)*s(n-1) + ... + s(k)*s(n-k+1), where k = floor(n/2), s = A023533. 1
 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,138 LINKS G. C. Greubel, Table of n, a(n) for n = 1..5000 MATHEMATICA b[j_]:= b[j]= Sum[KroneckerDelta[j, Binomial[m+2, 3]], {m, 0, 15}]; A025125[n_]:= A025125[n]= Sum[b[n -j+1]*b[j+1], {j, Floor[(n+2)/2], n}]; Table[A025125[n], {n, 130}] (* G. C. Greubel, Sep 14 2022 *) PROG (Magma) A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; A025125:= func< n | (&+[A023533(k)*A023533(n+2-k): k in [1..Floor((n+1)/2)]]) >; [A025125(n): n in [1..130]]; // G. C. Greubel, Sep 14 2022 (SageMath) @CachedFunction def b(j): return sum(bool(j==binomial(m+2, 3)) for m in (0..15)) @CachedFunction def A025125(n): return sum(b(n-j+1)*b(j+1) for j in (((n+2)//2)..n)) [A025125(n) for n in (1..130)] # G. C. Greubel, Sep 14 2022 CROSSREFS Cf. A023533. Sequence in context: A353489 A288106 A286939 * A147873 A103589 A305388 Adjacent sequences: A025122 A025123 A025124 * A025126 A025127 A025128 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 18:05 EDT 2023. Contains 361672 sequences. (Running on oeis4.)