login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061638
Primes p such that the greatest prime divisor of p-1 is 7.
1
29, 43, 71, 113, 127, 197, 211, 281, 337, 379, 421, 449, 491, 631, 673, 701, 757, 883, 1009, 1051, 1373, 1471, 2017, 2269, 2521, 2647, 2689, 2801, 3137, 3361, 3529, 4201, 4481, 5881, 6301, 7001, 7057, 7351, 7561, 7841, 8233, 8821, 10501, 10753, 12097
OFFSET
1,1
COMMENTS
Prime numbers n for which cos(2*Pi/n) is an algebraic number of 7th degree. - Artur Jasinski, Dec 13 2006
LINKS
Harry J. Smith and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 500 terms from Smith)
FORMULA
Primes of form 2^a*3^b*5^c*7^d + 1 with a and d > 1.
EXAMPLE
For n = {4, 8, 9, 12}, a(n)-1 = {70, 210, 280, 420} = 7*{10, 30, 40, 60}.
MATHEMATICA
Select[Prime[Range[2000]], FactorInteger[#-1][[-1, 1]] ==7&] (* Harvey P. Dale, Mar 12 2011 *)
PROG
(PARI) default(primelimit, 108864001); n=0; forprime (p=3, 108864001, f=factor(p - 1)~; if (f[1, length(f)]==7, write("b061638.txt", n++, " ", p))) \\ Harry J. Smith, Jul 25 2009
(PARI) list(lim)=my(v=List(), t, t5, t7); lim\=1; lim--; for(a=1, logint(lim\2, 7), t7=2*7^a; for(b=0, logint(lim\t7, 5), t5=5^b*t7; for(c=0, logint(lim\t5, 3), t=3^c*t5; while(t<=lim, if(isprime(t+1), listput(v, t+1)); t<<=1)))); Set(v) \\ Charles R Greathouse IV, Oct 29 2018
CROSSREFS
The 4th in a family of sequences after A019434(=Fermat-primes), A058383, A061599.
Sequence in context: A140444 A042969 A042967 * A136062 A039348 A043171
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 13 2001
STATUS
approved