login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057681
a(n) = Sum_{j=0..floor(n/3)} (-1)^j*binomial(n,3*j).
14
1, 1, 1, 0, -3, -9, -18, -27, -27, 0, 81, 243, 486, 729, 729, 0, -2187, -6561, -13122, -19683, -19683, 0, 59049, 177147, 354294, 531441, 531441, 0, -1594323, -4782969, -9565938, -14348907, -14348907, 0, 43046721, 129140163, 258280326, 387420489, 387420489
OFFSET
0,5
COMMENTS
Let M be any endomorphism on any vector space, such that M^3 = 1 (identity). Then (1-M)^n = a(n)-A057682(n)*M+z(n)*M^2, where z(0)=z(1)=0 and, apparently, z(n+2)=A057083(n). - Stanislav Sykora, Jun 10 2012
Pisano period lengths: 1, 3, 1, 6, 24, 3, 6, 12, 1, 24, 60, 6, 12, 6, 24, 24, 96, 3, 18, 24, ... . - R. J. Mathar, Aug 10 2012
{A057681, A057682, A*}, where A* is A057083 prefixed by two 0's, is the difference analog of the trigonometric functions of order 3, {k_1(x), k_2(x), k_3(x)}. For a definition see [Erdelyi] and the Shevelev link. - Vladimir Shevelev, Jun 25 2017
REFERENCES
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
FORMULA
From Paul Barry, Feb 26 2004: (Start)
G.f.: (1-x)^2/((1-x)^3+x^3).
a(n) = 0^n/3 + 2*3^((n-2)/2)*cos(Pi*n/6). (End)
From Paul Barry, Feb 27 2004: (Start)
Binomial transform of (1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, ...).
E.g.f.: 2*exp(3x/2)*cos(sqrt(3)*x/2)/3+1/3.
a(n) = (((3+sqrt(-3))/2)^n+((3-sqrt(-3))/2)^n)/3+0^n/3. (End)
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5). - Paul Curtz, Jan 02 2008
Start with x(0)=1,y(0)=0,z(0)=0 and set x(n+1)=x(n)-z(n), y(n+1)=y(n)-x(n),z(n+1)=z(n)-y(n). Then a(n)=x(n). But this recurrence falls into a repetitive cycle of length 6 and multiplicative factor -27, so that a(n) = -27*a(n-6) for any n>6. - Stanislav Sykora, Jun 10 2012
E.g.f.: (1+2*exp(3*z/2)*cos(z*sqrt(3/4)))/3. - Peter Luschny, Jul 10 2012
a(0)=a(1)=a(2)=1, a(n)=3*a(n-1)-3*a(n-2), n>=3. - Wesley Ivan Hurt, Nov 11 2014
For n>=1, a(n) = 2*3^((n-2)/2)*cos(Pi*n/6). - Vladimir Shevelev, Jun 25 2017
a(n+m) = a(n)*a(m)-A057682(n)*A*057083(m)-A*057083(n)*A057682(m), where A*057083 is A057083 prefixed by two 0's. - Vladimir Shevelev, Jun 25 2017
EXAMPLE
If M^3=1 then (1-M)^6 = a(6)-A057682(6)*M+A057083(4)*M^2 = -18+9*M+9*M^2.
MAPLE
A057681 := n->add((-1)^j*binomial(n, 3*j), j=0..floor(n/3)); seq(A057681(n), n=0..50);
A057681_list := proc(n) local i; series((1+2*exp(3*z/2)*cos(z*sqrt(3/4)))/3, z, n+2): seq(i!*coeff(%, z, i), i=0..n) end: A057681_list(38); # Peter Luschny, Jul 10 2012
MATHEMATICA
Join[{1}, LinearRecurrence[{3, -3}, {1, 1}, 40]] (* Harvey P. Dale, Aug 19 2014 *)
PROG
(PARI) x='x+O('x^40); Vec((1-x)^2/((1-x)^3+x^3)) \\ G. C. Greubel, Oct 23 2018
(Magma) I:=[1, 1]; [1] cat [n le 2 select I[n] else 3*Self(n-1) - 3*Self(n-2): n in [1..40]]; // G. C. Greubel, Oct 23 2018
(GAP) a:=[1, 1];; for n in [3..40] do a[n]:=3*a[n-1]-3*a[n-2]; od; Concatenation([1], a); # Muniru A Asiru, Oct 24 2018
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Oct 20 2000
STATUS
approved