The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103312 A transform of the Jacobsthal numbers. 2
 0, 1, 1, 1, 0, -3, -9, -18, -27, -27, 0, 81, 243, 486, 729, 729, 0, -2187, -6561, -13122, -19683, -19683, 0, 59049, 177147, 354294, 531441, 531441, 0, -1594323, -4782969, -9565938, -14348907, -14348907, 0, 43046721, 129140163, 258280326, 387420489, 387420489, 0, -1162261467, -3486784401 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Apply the Chebyshev transform (1/(1+x^2), x/(1+x^2)) followed by the binomial involution (1/(1-x),-x/(1-x)) (expressed as Riordan arrays) to -A001045(n). All elements are multiples of a power of 3. - Ralf Stephan, Jan 28 2005 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3). FORMULA G.f.: x(1-x)^2/(1-3x+3x^2); a(n)=-sum{j=0..n, (-1)^j*C(n, j)*sum{k=0..floor(j/2), (-1)^k*C(n-k, k)A001045(j-2k)}}. Recurrence: a(n+2) = 3a(n-1) - 3a(n), starting with 0, 1, 1, 1. - Ralf Stephan, Jan 28 2005 MATHEMATICA Join[{0, 1}, LinearRecurrence[{3, -3}, {1, 1}, 50]] (* Harvey P. Dale, Apr 12 2014 *) CoefficientList[Series[x (1 - x)^2/(1 - 3 x + 3 x^2), {x, 0, 50}], x] (* Vincenzo Librandi, Apr 13 2014 *) PROG (PARI) {a(n) = if( n<0, 0, polcoeff( x * (1 - x)^2 / (1 - 3*x + 3*x^2) + x * O(x^n), n))} /* Michael Somos, Sep 29 2007 */ (PARI) {a(n) = if(n<2, n>0, 3^(n\2-1) * (-1)^((n+1)\6) * (1 + (-1)^((n-1)\3) * (n%3==1)))} /* Michael Somos, Sep 29 2007 */ CROSSREFS Cf. A057681. Sequence in context: A325751 A123877 A057681 * A325729 A159794 A352643 Adjacent sequences: A103309 A103310 A103311 * A103313 A103314 A103315 KEYWORD easy,sign AUTHOR Paul Barry, Jan 30 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 01:31 EST 2022. Contains 358431 sequences. (Running on oeis4.)