login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103310
Largest prime primitive root of n that is less than n, or 0 if none exists.
6
0, 0, 0, 2, 3, 3, 5, 5, 0, 5, 7, 7, 0, 11, 5, 0, 0, 11, 11, 13, 0, 0, 19, 19, 0, 23, 19, 23, 0, 19, 0, 17, 0, 0, 31, 0, 0, 19, 29, 0, 0, 29, 0, 29, 0, 0, 43, 43, 0, 47, 47, 0, 0, 41, 47, 0, 0, 0, 47, 47, 0, 59, 53, 0, 0, 0, 0, 61, 0, 0, 0, 67, 0, 59, 61, 0, 0, 0, 0, 59, 0, 59, 71, 79, 0, 0, 73
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Primitive Root.
MAPLE
hasproot:= proc(n)
if n::odd then nops(numtheory:-factorset(n))=1
else padic:-ordp(n, 2)=1 and nops(numtheory:-factorset(n/2))=1
fi
end proc;
hasproot(2):= true: hasproot(4):= true:
f:= proc(n) local p, t;
if not hasproot(n) then return 0 fi;
t:= numtheory:-phi(n);
p:= prevprime(n);
while not numtheory:-order(p, n)=t do
if p = 2 then return 0 fi;
p:= prevprime(p);
od;
p
end proc:
f(0):= 0: f(1):= 0: f(2):= 0:
map(f, [$0..100]); # Robert Israel, Sep 08 2020
MATHEMATICA
a[n_] := Module[{R = PrimitiveRootList[n], s}, s = Select[R, # < n && PrimeQ[#]&]; If[s == {}, 0, s[[-1]]]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 01 2023 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Harry J. Smith, Jan 29 2005
STATUS
approved