The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103311 A transform of the Fibonacci numbers. 6
 0, 1, 1, 0, -2, -5, -8, -8, 0, 21, 55, 89, 89, 0, -233, -610, -987, -987, 0, 2584, 6765, 10946, 10946, 0, -28657, -75025, -121393, -121393, 0, 317811, 832040, 1346269, 1346269, 0, -3524578, -9227465, -14930352, -14930352, 0, 39088169, 102334155, 165580141, 165580141, 0, -433494437, -1134903170 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Apply the Chebyshev transform (1/(1+x^2), x/(1+x^2)) followed by the binomial involution (1/(1-x), -x/(1-x)) (expressed as Riordan arrays) to -Fibonacci(n). Conjecture: all elements in absolute value are Fibonacci numbers. LINKS Index entries for linear recurrences with constant coefficients, signature (3,-4,2,-1). FORMULA G.f.: x*(1-x)^2/(1 - 3*x + 4*x^2 - 2*x^3 + x^4); a(n) = 3*a(n-1) - 4*a(n-2) + 2*a(n-3) - a(n-4); a(n) = (sqrt(5)/2 - 1/2)^n*(sqrt(2*sqrt(5)/25 + 1/5)*sin(2*Pi*n/5) - sqrt(5)*cos(2*Pi*n/5)/5) + (sqrt(5)/2 + 1/2)^n*(sqrt(5)*cos(Pi*n/5)/5 + sqrt(1/5 - 2*sqrt(5)/25)*sin(Pi*n/5)); a(n) = -Sum_{j=0..n} (-1)^j*binomial(n, j)*Sum_{k=0..floor(j/2)} (-1)^k*binomial(n-k, k)*Fibonacci(j-2*k). MATHEMATICA LinearRecurrence[{3, -4, 2, -1}, {0, 1, 1, 0}, 50] (* Harvey P. Dale, May 03 2020 *) CROSSREFS Cf. A000045. Sequence in context: A250206 A138371 A140053 * A019824 A284868 A019772 Adjacent sequences:  A103308 A103309 A103310 * A103312 A103313 A103314 KEYWORD easy,sign AUTHOR Paul Barry, Jan 30 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 21:29 EDT 2021. Contains 345393 sequences. (Running on oeis4.)