The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265145 Number of lambda-parking functions of the unique strict partition lambda with parts i_1
 1, 1, 2, 3, 3, 5, 4, 16, 8, 7, 5, 25, 6, 9, 12, 125, 7, 34, 8, 34, 16, 11, 9, 189, 15, 13, 50, 43, 10, 49, 11, 1296, 20, 15, 21, 243, 12, 17, 24, 253, 13, 64, 14, 52, 74, 19, 15, 1921, 24, 58, 28, 61, 16, 307, 27, 317, 32, 21, 17, 343, 18, 23, 98, 16807, 33 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS A strict partition is a partition into distinct parts. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..20000 R. Stanley, Parking Functions, 2011 EXAMPLE n = 10 = 2*5 = prime(1)*prime(3) encodes strict partition [1,4] having seven lambda-parking functions: [1,1], [1,2], [2,1], [1,3], [3,1], [1,4], [4,1], thus a(10) = 7. MAPLE p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j)          -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)): a:= n-> p((l-> [seq(l[j]+j-1, j=1..nops(l))])(sort([seq(          numtheory[pi](i[1])\$i[2], i=ifactors(n)[2])]))): seq(a(n), n=1..100); CROSSREFS Cf. A000009, A000040, A265144, A265146, A265208. Sequence in context: A238792 A158745 A175108 * A103310 A046146 A081768 Adjacent sequences:  A265142 A265143 A265144 * A265146 A265147 A265148 KEYWORD nonn AUTHOR Alois P. Heinz, Dec 02 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 7 13:27 EDT 2020. Contains 333305 sequences. (Running on oeis4.)