login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265208
Total number T(n,k) of lambda-parking functions induced by all partitions of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
4
1, 0, 1, 0, 2, 0, 3, 3, 0, 4, 5, 0, 5, 10, 0, 6, 14, 16, 0, 7, 21, 25, 0, 8, 27, 43, 0, 9, 36, 74, 0, 10, 44, 107, 125, 0, 11, 55, 146, 189, 0, 12, 65, 207, 307, 0, 13, 78, 267, 471, 0, 14, 90, 342, 786, 0, 15, 105, 436, 1058, 1296, 0, 16, 119, 538, 1490, 1921
OFFSET
0,5
COMMENTS
Differs from A265020 first at T(5,2). See example.
LINKS
R. Stanley, Parking Functions, 2011
FORMULA
T(A000217(n),n) = A000272(n+1).
EXAMPLE
T(5,2) = 10: There are two partitions of 5 into 2 distinct parts: [2,3], [1,4]. Together they have 10 lambda-parking functions: [1,1], [1,2], [1,3], [1,4], [2,1], [2,2], [2,3], [3,1], [3,2], [4,1]. Here [1,1], [1,2], [1,3], [2,1], [3,1] are induced by both partitions. But they are counted only once.
T(6,1) = 6: [1], [2], [3], [4], [5], [6].
T(6,2) = 14: [1,1], [1,2], [1,3], [1,4], [1,5], [2,1], [2,2], [2,3], [2,4], [3,1], [3,2], [4,1], [4,2], [5,1].
T(6,3) = 16: [1,1,1], [1,1,2], [1,1,3], [1,2,1], [1,2,2], [1,2,3], [1,3,1], [1,3,2], [2,1,1], [2,1,2], [2,1,3], [2,2,1], [2,3,1], [3,1,1], [3,1,2], [3,2,1].
Triangle T(n,k) begins:
00 : 1;
01 : 0, 1;
02 : 0, 2;
03 : 0, 3, 3;
04 : 0, 4, 5;
05 : 0, 5, 10;
06 : 0, 6, 14, 16;
07 : 0, 7, 21, 25;
08 : 0, 8, 27, 43;
09 : 0, 9, 36, 74;
10 : 0, 10, 44, 107, 125;
11 : 0, 11, 55, 146, 189;
12 : 0, 12, 65, 207, 307;
13 : 0, 13, 78, 267, 471;
14 : 0, 14, 90, 342, 786;
15 : 0, 15, 105, 436, 1058, 1296;
16 : 0, 16, 119, 538, 1490, 1921;
MAPLE
b:= proc(p, g, n, i, t) option remember; `if`(g=0, 0, p!/g!*x^p)+
`if`(n<t, 0, add(b(p+1, `if`(i=j, g+1, 1), n-max(j, t), j,
max(j, t)+1)/`if`(i=j, 1, g!), j=i..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
`if`(n=0, 1, b(0$2, n, 1$2))):
seq(T(n), n=0..25);
MATHEMATICA
b[p_, g_, n_, i_, t_] := b[p, g, n, i, t] = If[g==0, 0, p!/g!*x^p] + If[n<t, 0, Sum[b[p+1, If[i==j, g+1, 1], n-Max[j, t], j, Max[j, t]+1] / If[i==j, 1, g!], {j, i, n}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][If[n==0, 1, b[0, 0, n, 1, 1]]]; Table[T[n], {n, 0, 25}] // Flatten (* Jean-François Alcover, Feb 02 2017, translated from Maple *)
CROSSREFS
Columns k=0-2 give: A000007, A000027, A176222(n+1).
Row sums give A265202.
Cf. A000217, A000272, A003056, A206735 (the same for general partitions), A265020, A265145.
Sequence in context: A328911 A138057 A053727 * A265020 A325191 A209703
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Dec 04 2015
STATUS
approved