login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265020
Total sum T(n,k) of number of lambda-parking functions of partitions lambda of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
3
1, 0, 1, 0, 2, 0, 3, 3, 0, 4, 5, 0, 5, 15, 0, 6, 21, 16, 0, 7, 42, 25, 0, 8, 54, 68, 0, 9, 90, 142, 0, 10, 110, 248, 125, 0, 11, 165, 409, 189, 0, 12, 195, 710, 496, 0, 13, 273, 1033, 967, 0, 14, 315, 1562, 2096, 0, 15, 420, 2291, 3265, 1296, 0, 16, 476, 3180
OFFSET
0,5
COMMENTS
Differs from A265208 first at T(5,2). See example.
LINKS
R. Stanley, Parking Functions, 2011
FORMULA
T(A000217(n),n) = A000272(n+1).
EXAMPLE
T(5,2) = 15 because there are two partitions of 5 into 2 distinct parts: [2,3] and [1,4]. And [2,3] has 8 lambda-parking functions: [1,1], [1,2], [1,3], [2,1], [2,2], [2,3], [3,1], [3,2] and [1,4] has 7: [1,1], [1,2], [1,3], [1,4], [2,1], [3,1], [4,1]. So [1,1], [1,2], [1,3], [2,1], [3,1] are counted twice.
Triangle T(n,k) begins:
00 : 1;
01 : 0, 1;
02 : 0, 2;
03 : 0, 3, 3;
04 : 0, 4, 5;
05 : 0, 5, 15;
06 : 0, 6, 21, 16;
07 : 0, 7, 42, 25;
08 : 0, 8, 54, 68;
09 : 0, 9, 90, 142;
10 : 0, 10, 110, 248, 125;
11 : 0, 11, 165, 409, 189;
12 : 0, 12, 195, 710, 496;
13 : 0, 13, 273, 1033, 967;
14 : 0, 14, 315, 1562, 2096;
15 : 0, 15, 420, 2291, 3265, 1296;
16 : 0, 16, 476, 3180, 6057, 1921;
MAPLE
p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j)
-> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)):
g:= (n, i, l)-> `if`(i*(i+1)/2<n, 0, `if`(n=0, p(l)*x^nops(l),
g(n, i-1, l)+`if`(i>n, 0, g(n-i, i-1, [i, l[]])))):
T:= n-> (f-> seq(coeff(f, x, i), i=0..degree(f)))(g(n$2, [])):
seq(T(n), n=0..20);
MATHEMATICA
p[l_] := With[{n = Length[l]}, n!*Det[Table[With[{t = j - i + 1}, l[[i]]^t/t!], {i, 1, n}, {j, 1, n}]]];
g[n_, i_, l_] := If[i*(i + 1)/2 < n, 0, If[n == 0, p[l]*x^Length[l], g[n, i - 1, l] + If[i > n, 0, g[n - i, i - 1, Join[{i}, l]]]]];
T[n_] := If[n == 0, {1}, CoefficientList[g[n, n, {}], x]];
Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jul 29 2024, after Alois P. Heinz *)
CROSSREFS
Row sums give A265016.
Columns k=0-1 give: A000007, A000027.
Sequence in context: A138057 A053727 A265208 * A325191 A209703 A279779
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Nov 30 2015
STATUS
approved