Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jul 29 2024 07:13:36
%S 1,0,1,0,2,0,3,3,0,4,5,0,5,15,0,6,21,16,0,7,42,25,0,8,54,68,0,9,90,
%T 142,0,10,110,248,125,0,11,165,409,189,0,12,195,710,496,0,13,273,1033,
%U 967,0,14,315,1562,2096,0,15,420,2291,3265,1296,0,16,476,3180
%N Total sum T(n,k) of number of lambda-parking functions of partitions lambda of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
%C Differs from A265208 first at T(5,2). See example.
%H Alois P. Heinz, <a href="/A265020/b265020.txt">Rows n = 0..100, flattened</a>
%H R. Stanley, <a href="http://math.mit.edu/~rstan/transparencies/parking.pdf">Parking Functions</a>, 2011
%F T(A000217(n),n) = A000272(n+1).
%e T(5,2) = 15 because there are two partitions of 5 into 2 distinct parts: [2,3] and [1,4]. And [2,3] has 8 lambda-parking functions: [1,1], [1,2], [1,3], [2,1], [2,2], [2,3], [3,1], [3,2] and [1,4] has 7: [1,1], [1,2], [1,3], [1,4], [2,1], [3,1], [4,1]. So [1,1], [1,2], [1,3], [2,1], [3,1] are counted twice.
%e Triangle T(n,k) begins:
%e 00 : 1;
%e 01 : 0, 1;
%e 02 : 0, 2;
%e 03 : 0, 3, 3;
%e 04 : 0, 4, 5;
%e 05 : 0, 5, 15;
%e 06 : 0, 6, 21, 16;
%e 07 : 0, 7, 42, 25;
%e 08 : 0, 8, 54, 68;
%e 09 : 0, 9, 90, 142;
%e 10 : 0, 10, 110, 248, 125;
%e 11 : 0, 11, 165, 409, 189;
%e 12 : 0, 12, 195, 710, 496;
%e 13 : 0, 13, 273, 1033, 967;
%e 14 : 0, 14, 315, 1562, 2096;
%e 15 : 0, 15, 420, 2291, 3265, 1296;
%e 16 : 0, 16, 476, 3180, 6057, 1921;
%p p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j)
%p -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)):
%p g:= (n, i, l)-> `if`(i*(i+1)/2<n, 0, `if`(n=0, p(l)*x^nops(l),
%p g(n, i-1, l)+`if`(i>n, 0, g(n-i, i-1, [i, l[]])))):
%p T:= n-> (f-> seq(coeff(f, x, i), i=0..degree(f)))(g(n$2, [])):
%p seq(T(n), n=0..20);
%t p[l_] := With[{n = Length[l]}, n!*Det[Table[With[{t = j - i + 1}, l[[i]]^t/t!], {i, 1, n}, {j, 1, n}]]];
%t g[n_, i_, l_] := If[i*(i + 1)/2 < n, 0, If[n == 0, p[l]*x^Length[l], g[n, i - 1, l] + If[i > n, 0, g[n - i, i - 1, Join[{i}, l]]]]];
%t T[n_] := If[n == 0, {1}, CoefficientList[g[n, n, {}], x]];
%t Table[T[n], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, Jul 29 2024, after _Alois P. Heinz_ *)
%Y Row sums give A265016.
%Y Columns k=0-1 give: A000007, A000027.
%Y Cf. A000217, A000272, A003056, A265208.
%K nonn,tabf
%O 0,5
%A _Alois P. Heinz_, Nov 30 2015