Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Feb 02 2017 10:02:07
%S 1,0,1,0,2,0,3,3,0,4,5,0,5,10,0,6,14,16,0,7,21,25,0,8,27,43,0,9,36,74,
%T 0,10,44,107,125,0,11,55,146,189,0,12,65,207,307,0,13,78,267,471,0,14,
%U 90,342,786,0,15,105,436,1058,1296,0,16,119,538,1490,1921
%N Total number T(n,k) of lambda-parking functions induced by all partitions of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
%C Differs from A265020 first at T(5,2). See example.
%H Alois P. Heinz, <a href="/A265208/b265208.txt">Rows n = 0..400, flattened</a>
%H R. Stanley, <a href="http://math.mit.edu/~rstan/transparencies/parking.pdf">Parking Functions</a>, 2011
%F T(A000217(n),n) = A000272(n+1).
%e T(5,2) = 10: There are two partitions of 5 into 2 distinct parts: [2,3], [1,4]. Together they have 10 lambda-parking functions: [1,1], [1,2], [1,3], [1,4], [2,1], [2,2], [2,3], [3,1], [3,2], [4,1]. Here [1,1], [1,2], [1,3], [2,1], [3,1] are induced by both partitions. But they are counted only once.
%e T(6,1) = 6: [1], [2], [3], [4], [5], [6].
%e T(6,2) = 14: [1,1], [1,2], [1,3], [1,4], [1,5], [2,1], [2,2], [2,3], [2,4], [3,1], [3,2], [4,1], [4,2], [5,1].
%e T(6,3) = 16: [1,1,1], [1,1,2], [1,1,3], [1,2,1], [1,2,2], [1,2,3], [1,3,1], [1,3,2], [2,1,1], [2,1,2], [2,1,3], [2,2,1], [2,3,1], [3,1,1], [3,1,2], [3,2,1].
%e Triangle T(n,k) begins:
%e 00 : 1;
%e 01 : 0, 1;
%e 02 : 0, 2;
%e 03 : 0, 3, 3;
%e 04 : 0, 4, 5;
%e 05 : 0, 5, 10;
%e 06 : 0, 6, 14, 16;
%e 07 : 0, 7, 21, 25;
%e 08 : 0, 8, 27, 43;
%e 09 : 0, 9, 36, 74;
%e 10 : 0, 10, 44, 107, 125;
%e 11 : 0, 11, 55, 146, 189;
%e 12 : 0, 12, 65, 207, 307;
%e 13 : 0, 13, 78, 267, 471;
%e 14 : 0, 14, 90, 342, 786;
%e 15 : 0, 15, 105, 436, 1058, 1296;
%e 16 : 0, 16, 119, 538, 1490, 1921;
%p b:= proc(p, g, n, i, t) option remember; `if`(g=0, 0, p!/g!*x^p)+
%p `if`(n<t, 0, add(b(p+1, `if`(i=j, g+1, 1), n-max(j, t), j,
%p max(j, t)+1)/`if`(i=j, 1, g!), j=i..n))
%p end:
%p T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
%p `if`(n=0, 1, b(0$2, n, 1$2))):
%p seq(T(n), n=0..25);
%t b[p_, g_, n_, i_, t_] := b[p, g, n, i, t] = If[g==0, 0, p!/g!*x^p] + If[n<t, 0, Sum[b[p+1, If[i==j, g+1, 1], n-Max[j, t], j, Max[j, t]+1] / If[i==j, 1, g!], {j, i, n}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][If[n==0, 1, b[0, 0, n, 1, 1]]]; Table[T[n], {n, 0, 25}] // Flatten (* _Jean-François Alcover_, Feb 02 2017, translated from Maple *)
%Y Columns k=0-2 give: A000007, A000027, A176222(n+1).
%Y Row sums give A265202.
%Y Cf. A000217, A000272, A003056, A206735 (the same for general partitions), A265020, A265145.
%K nonn,tabf
%O 0,5
%A _Alois P. Heinz_, Dec 04 2015