The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057681 a(n) = Sum_{j=0..floor(n/3)} (-1)^j*binomial(n,3*j). 14

%I #70 May 10 2023 11:58:32

%S 1,1,1,0,-3,-9,-18,-27,-27,0,81,243,486,729,729,0,-2187,-6561,-13122,

%T -19683,-19683,0,59049,177147,354294,531441,531441,0,-1594323,

%U -4782969,-9565938,-14348907,-14348907,0,43046721,129140163,258280326,387420489,387420489

%N a(n) = Sum_{j=0..floor(n/3)} (-1)^j*binomial(n,3*j).

%C Let M be any endomorphism on any vector space, such that M^3 = 1 (identity). Then (1-M)^n = a(n)-A057682(n)*M+z(n)*M^2, where z(0)=z(1)=0 and, apparently, z(n+2)=A057083(n). - _Stanislav Sykora_, Jun 10 2012

%C Pisano period lengths: 1, 3, 1, 6, 24, 3, 6, 12, 1, 24, 60, 6, 12, 6, 24, 24, 96, 3, 18, 24, ... . - _R. J. Mathar_, Aug 10 2012

%C {A057681, A057682, A*}, where A* is A057083 prefixed by two 0's, is the difference analog of the trigonometric functions of order 3, {k_1(x), k_2(x), k_3(x)}. For a definition see [Erdelyi] and the Shevelev link. - _Vladimir Shevelev_, Jun 25 2017

%D A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.

%H G. C. Greubel, <a href="/A057681/b057681.txt">Table of n, a(n) for n = 0..1000</a>

%H T. Alden Gassert, <a href="http://arxiv.org/abs/1409.7829">Discriminants of simplest 3^n-tic extensions</a>, arXiv:1409.7829 [math.NT], 2014.

%H Mark W. Coffey, <a href="http://arxiv.org/abs/1506.09160">Reductions of particular hypergeometric functions 3F2 (a, a+1/3, a+2/3; p/3, q/3; +-1)</a>, arXiv:1506.09160 [math.CA], 2015.

%H John B. Dobson, <a href="http://arxiv.org/abs/1610.09361">A matrix variation on Ramus's identity for lacunary sums of binomial coefficients</a>, arXiv:1610.09361 [math.NT], 2016.

%H Ira Gessel, <a href="http://www.cs.brandeis.edu/~ira/">The Smith College diploma problem</a>.

%H Vladimir Shevelev, <a href="https://arxiv.org/abs/1706.01454">Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n</a>, arXiv:1706.01454 [math.CO], 2017.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3).

%F From _Paul Barry_, Feb 26 2004: (Start)

%F G.f.: (1-x)^2/((1-x)^3+x^3).

%F a(n) = 0^n/3 + 2*3^((n-2)/2)*cos(Pi*n/6). (End)

%F From _Paul Barry_, Feb 27 2004: (Start)

%F Binomial transform of (1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, ...).

%F E.g.f.: 2*exp(3x/2)*cos(sqrt(3)*x/2)/3+1/3.

%F a(n) = (((3+sqrt(-3))/2)^n+((3-sqrt(-3))/2)^n)/3+0^n/3. (End)

%F a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5). - _Paul Curtz_, Jan 02 2008

%F Start with x(0)=1,y(0)=0,z(0)=0 and set x(n+1)=x(n)-z(n), y(n+1)=y(n)-x(n),z(n+1)=z(n)-y(n). Then a(n)=x(n). But this recurrence falls into a repetitive cycle of length 6 and multiplicative factor -27, so that a(n) = -27*a(n-6) for any n>6. - _Stanislav Sykora_, Jun 10 2012

%F E.g.f.: (1+2*exp(3*z/2)*cos(z*sqrt(3/4)))/3. - _Peter Luschny_, Jul 10 2012

%F a(0)=a(1)=a(2)=1, a(n)=3*a(n-1)-3*a(n-2), n>=3. - _Wesley Ivan Hurt_, Nov 11 2014

%F For n>=1, a(n) = 2*3^((n-2)/2)*cos(Pi*n/6). - _Vladimir Shevelev_, Jun 25 2017

%F a(n+m) = a(n)*a(m)-A057682(n)*A*057083(m)-A*057083(n)*A057682(m), where A*057083 is A057083 prefixed by two 0's. - _Vladimir Shevelev_, Jun 25 2017

%e If M^3=1 then (1-M)^6 = a(6)-A057682(6)*M+A057083(4)*M^2 = -18+9*M+9*M^2.

%p A057681 := n->add((-1)^j*binomial(n,3*j),j=0..floor(n/3)); seq(A057681(n), n=0..50);

%p A057681_list := proc(n) local i; series((1+2*exp(3*z/2)*cos(z*sqrt(3/4)))/3, z,n+2): seq(i!*coeff(%,z,i),i=0..n) end: A057681_list(38); # _Peter Luschny_, Jul 10 2012

%t Join[{1},LinearRecurrence[{3,-3},{1,1},40]] (* _Harvey P. Dale_, Aug 19 2014 *)

%o (PARI) x='x+O('x^40); Vec((1-x)^2/((1-x)^3+x^3)) \\ _G. C. Greubel_, Oct 23 2018

%o (Magma) I:=[1,1]; [1] cat [n le 2 select I[n] else 3*Self(n-1) - 3*Self(n-2): n in [1..40]]; // _G. C. Greubel_, Oct 23 2018

%o (GAP) a:=[1,1];; for n in [3..40] do a[n]:=3*a[n-1]-3*a[n-2]; od; Concatenation([1],a); # _Muniru A Asiru_, Oct 24 2018

%Y Cf. A009116, A009545, A057682, A057083, A103312.

%K sign,easy

%O 0,5

%A _N. J. A. Sloane_, Oct 20 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 3 00:27 EDT 2024. Contains 373054 sequences. (Running on oeis4.)