login
A057682
a(n) = Sum_{j=0..floor(n/3)} (-1)^j*binomial(n,3*j+1).
17
0, 1, 2, 3, 3, 0, -9, -27, -54, -81, -81, 0, 243, 729, 1458, 2187, 2187, 0, -6561, -19683, -39366, -59049, -59049, 0, 177147, 531441, 1062882, 1594323, 1594323, 0, -4782969, -14348907, -28697814, -43046721, -43046721, 0, 129140163, 387420489, 774840978
OFFSET
0,3
COMMENTS
Let M be any endomorphism on any vector space, such that M^3 = 1 (identity). Then (1-M)^n = A057681(n)-a(n)*M+z(n)*M^2, where z(0)=z(1)=0 and, apparently, z(n+2)=A057083(n). - Stanislav Sykora, Jun 10 2012
From Tom Copeland, Nov 09 2014: (Start)
This array belongs to an interpolated family of arrays associated to the Catalan A000108 (t=1), and Riordan, or Motzkin sums A005043 (t=0), with the interp. (here t=-2) o.g.f. G(x,t) = x(1-x)/[1+(t-1)x(1-x)] and inverse o.g.f. Ginv(x,t) = [1-sqrt(1-4x/(1+(1-t)x))]/2 (Cf. A005773 and A091867 and A030528 for more info on this family). (End)
{A057681, A057682, A*}, where A* is A057083 prefixed by two 0's, is the difference analog of the trigonometric functions {k_1(x), k_2(x), k_3(x)} of order 3. For the definitions of {k_i(x)} and the difference analog {K_i (n)} see [Erdelyi] and the Shevelev link respectively. - Vladimir Shevelev, Jul 31 2017
REFERENCES
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
FORMULA
G.f.: (x - x^2) / (1 - 3*x + 3*x^2).
a(n) = 3*a(n-1) - 3*a(n-2), if n>1.
Starting at 1, the binomial transform of A000484. - Paul Barry, Jul 21 2003
It appears that abs(a(n)) = floor(abs(A000748(n))/3). - John W. Layman, Sep 05 2003
a(n) = ((3+i*sqrt(3))/2)^(n-2) + ((3-i*sqrt(3))/2)^(n-2). - Benoit Cloitre, Oct 27 2003
a(n) = n*3F2(1/3-n/3,2/3-n/3,1-n/3 ; 2/3,4/3 ; 1) for n>=1. - John M. Campbell, Jun 01 2011
Let A(n) be the n X n matrix with -1's along the main diagonal, 1's everywhere above the main diagonal, and 1's along the subdiagonal. Then a(n) equals (-1)^(n-1) times the sum of the coefficients of the characteristic polynomial of A(n-1), for all n>1 (see Mathematica code below). - John M. Campbell, Mar 16 2012
Start with x(0)=1, y(0)=0, z(0)=0 and set x(n+1) = x(n) - z(n), y(n+1) = y(n) - x(n), z(n+1) = z(n) - y(n). Then a(n) = -y(n). But this recurrence falls into a repetitive cycle of length 6 and multiplicative factor -27, so that a(n) = -27*a(n-6) for any n>6. - Stanislav Sykora, Jun 10 2012
a(n) = A057083(n-1) - A057083(n-2). - R. J. Mathar, Oct 25 2012
G.f.: 3*x - 1/3 + 3*x/(G(0) - 1) where G(k)= 1 + 3*(2*k+3)*x/(2*k+1 - 3*x*(k+2)*(2*k+1)/(3*x*(k+2) + (k+1)/G(k+1)));(continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 23 2012
G.f.: Q(0,u) -1, where u=x/(1-x), Q(k,u) = 1 - u^2 + (k+2)*u - u*(k+1 - u)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
From Vladimir Shevelev, Jul 31 2017: (Start)
For n>=1, a(n) = 2*3^((n-2)/2)*cos(Pi*(n-2)/6);
For n>=2, a(n) = K_1(n) + K_3(n-2);
For m,n>=2, a(n+m) = a(n)*K_1(m) + K_1(n)*a(m) - K_3(n-2)*K_3(m-2), where
K_1 = A057681, K_3 = A057083. (End)
EXAMPLE
G.f. = x + 2*x^2 + 3*x^3 + 3*x^4 - 9*x^6 - 27*x^7 - 54*x^8 - 81*x^9 + ...
If M^3=1 then (1-M)^6 = A057681(6) - a(6)*M + A057083(4)*M^2 = -18 + 9*M + 9*M^2. - Stanislav Sykora, Jun 10 2012
MAPLE
A057682:=n->add((-1)^j*binomial(n, 3*j+1), j=0..floor(n/3)):
seq(A057682(n), n=0..50); # Wesley Ivan Hurt, Nov 11 2014
MATHEMATICA
A[n_] := Array[KroneckerDelta[#1, #2 + 1] - KroneckerDelta[#1, #2] + Sum[KroneckerDelta[#1, #2 -q], {q, n}] &, {n, n}];
Join[{0, 1}, Table[(-1)^(n-1)*Total[CoefficientList[ CharacteristicPolynomial[A[(n-1)], x], x]], {n, 2, 30}]] (* John M. Campbell, Mar 16 2012 *)
Join[{0}, LinearRecurrence[{3, -3}, {1, 2}, 40]] (* Jean-François Alcover, Jan 08 2019 *)
PROG
(PARI) {a(n) = sum( j=0, n\3, (-1)^j * binomial(n, 3*j + 1))} /* Michael Somos, May 26 2004 */
(PARI) {a(n) = if( n<2, n>0, n-=2; polsym(x^2 - 3*x + 3, n)[n + 1])} /* Michael Somos, May 26 2004 */
(Magma) I:=[0, 1, 2]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2): n in [1..45]]; // Vincenzo Librandi, Nov 10 2014
(SageMath)
b=BinaryRecurrenceSequence(3, -3, 1, 2)
def A057682(n): return 0 if n==0 else b(n-1)
[A057682(n) for n in range(41)] # G. C. Greubel, Jul 14 2023
CROSSREFS
Alternating row sums of triangle A030523.
Sequence in context: A121474 A138003 A329232 * A124841 A085355 A103120
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Oct 20 2000
STATUS
approved