login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{j=0..floor(n/3)} (-1)^j*binomial(n,3*j+1).
17

%I #79 Jul 14 2023 17:49:33

%S 0,1,2,3,3,0,-9,-27,-54,-81,-81,0,243,729,1458,2187,2187,0,-6561,

%T -19683,-39366,-59049,-59049,0,177147,531441,1062882,1594323,1594323,

%U 0,-4782969,-14348907,-28697814,-43046721,-43046721,0,129140163,387420489,774840978

%N a(n) = Sum_{j=0..floor(n/3)} (-1)^j*binomial(n,3*j+1).

%C Let M be any endomorphism on any vector space, such that M^3 = 1 (identity). Then (1-M)^n = A057681(n)-a(n)*M+z(n)*M^2, where z(0)=z(1)=0 and, apparently, z(n+2)=A057083(n). - _Stanislav Sykora_, Jun 10 2012

%C From _Tom Copeland_, Nov 09 2014: (Start)

%C This array belongs to an interpolated family of arrays associated to the Catalan A000108 (t=1), and Riordan, or Motzkin sums A005043 (t=0), with the interp. (here t=-2) o.g.f. G(x,t) = x(1-x)/[1+(t-1)x(1-x)] and inverse o.g.f. Ginv(x,t) = [1-sqrt(1-4x/(1+(1-t)x))]/2 (Cf. A005773 and A091867 and A030528 for more info on this family). (End)

%C {A057681, A057682, A*}, where A* is A057083 prefixed by two 0's, is the difference analog of the trigonometric functions {k_1(x), k_2(x), k_3(x)} of order 3. For the definitions of {k_i(x)} and the difference analog {K_i (n)} see [Erdelyi] and the Shevelev link respectively. - _Vladimir Shevelev_, Jul 31 2017

%D A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.

%H G. C. Greubel, <a href="/A057682/b057682.txt">Table of n, a(n) for n = 0..1000</a>

%H Mark W. Coffey, <a href="http://arxiv.org/abs/1506.09160">Reductions of particular hypergeometric functions 3F2 (a, a+1/3, a+2/3; p/3, q/3; +-1)</a>, arXiv preprint arXiv:1506.09160 [math.CA], 2015.

%H Vladimir Shevelev, <a href="https://arxiv.org/abs/1706.01454">Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n</a>, arXiv:1706.01454 [math.CO], 2017.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3).

%F G.f.: (x - x^2) / (1 - 3*x + 3*x^2).

%F a(n) = 3*a(n-1) - 3*a(n-2), if n>1.

%F Starting at 1, the binomial transform of A000484. - _Paul Barry_, Jul 21 2003

%F It appears that abs(a(n)) = floor(abs(A000748(n))/3). - _John W. Layman_, Sep 05 2003

%F a(n) = ((3+i*sqrt(3))/2)^(n-2) + ((3-i*sqrt(3))/2)^(n-2). - _Benoit Cloitre_, Oct 27 2003

%F a(n) = n*3F2(1/3-n/3,2/3-n/3,1-n/3 ; 2/3,4/3 ; 1) for n>=1. - _John M. Campbell_, Jun 01 2011

%F Let A(n) be the n X n matrix with -1's along the main diagonal, 1's everywhere above the main diagonal, and 1's along the subdiagonal. Then a(n) equals (-1)^(n-1) times the sum of the coefficients of the characteristic polynomial of A(n-1), for all n>1 (see Mathematica code below). - _John M. Campbell_, Mar 16 2012

%F Start with x(0)=1, y(0)=0, z(0)=0 and set x(n+1) = x(n) - z(n), y(n+1) = y(n) - x(n), z(n+1) = z(n) - y(n). Then a(n) = -y(n). But this recurrence falls into a repetitive cycle of length 6 and multiplicative factor -27, so that a(n) = -27*a(n-6) for any n>6. - _Stanislav Sykora_, Jun 10 2012

%F a(n) = A057083(n-1) - A057083(n-2). - _R. J. Mathar_, Oct 25 2012

%F G.f.: 3*x - 1/3 + 3*x/(G(0) - 1) where G(k)= 1 + 3*(2*k+3)*x/(2*k+1 - 3*x*(k+2)*(2*k+1)/(3*x*(k+2) + (k+1)/G(k+1)));(continued fraction, 3rd kind, 3-step). - _Sergei N. Gladkovskii_, Nov 23 2012

%F G.f.: Q(0,u) -1, where u=x/(1-x), Q(k,u) = 1 - u^2 + (k+2)*u - u*(k+1 - u)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Oct 07 2013

%F From _Vladimir Shevelev_, Jul 31 2017: (Start)

%F For n>=1, a(n) = 2*3^((n-2)/2)*cos(Pi*(n-2)/6);

%F For n>=2, a(n) = K_1(n) + K_3(n-2);

%F For m,n>=2, a(n+m) = a(n)*K_1(m) + K_1(n)*a(m) - K_3(n-2)*K_3(m-2), where

%F K_1 = A057681, K_3 = A057083. (End)

%e G.f. = x + 2*x^2 + 3*x^3 + 3*x^4 - 9*x^6 - 27*x^7 - 54*x^8 - 81*x^9 + ...

%e If M^3=1 then (1-M)^6 = A057681(6) - a(6)*M + A057083(4)*M^2 = -18 + 9*M + 9*M^2. - _Stanislav Sykora_, Jun 10 2012

%p A057682:=n->add((-1)^j*binomial(n,3*j+1), j=0..floor(n/3)):

%p seq(A057682(n), n=0..50); # _Wesley Ivan Hurt_, Nov 11 2014

%t A[n_] := Array[KroneckerDelta[#1, #2 + 1] - KroneckerDelta[#1, #2] + Sum[KroneckerDelta[#1, #2 -q], {q, n}] &, {n, n}];

%t Join[{0,1}, Table[(-1)^(n-1)*Total[CoefficientList[ CharacteristicPolynomial[A[(n-1)], x], x]], {n,2,30}]] (* _John M. Campbell_, Mar 16 2012 *)

%t Join[{0}, LinearRecurrence[{3,-3}, {1,2}, 40]] (* _Jean-François Alcover_, Jan 08 2019 *)

%o (PARI) {a(n) = sum( j=0, n\3, (-1)^j * binomial(n, 3*j + 1))} /* _Michael Somos_, May 26 2004 */

%o (PARI) {a(n) = if( n<2, n>0, n-=2; polsym(x^2 - 3*x + 3, n)[n + 1])} /* _Michael Somos_, May 26 2004 */

%o (Magma) I:=[0,1,2]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2): n in [1..45]]; // _Vincenzo Librandi_, Nov 10 2014

%o (SageMath)

%o b=BinaryRecurrenceSequence(3,-3,1,2)

%o def A057682(n): return 0 if n==0 else b(n-1)

%o [A057682(n) for n in range(41)] # _G. C. Greubel_, Jul 14 2023

%Y Alternating row sums of triangle A030523.

%Y Cf. A000108, A000484, A000748, A005043, A005773, A057083, A057681, A091867.

%K sign,easy

%O 0,3

%A _N. J. A. Sloane_, Oct 20 2000