OFFSET
1,1
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, 1973.
LINKS
M. A. Harrison, A census of finite automata, Canad. J. Math., 17, No. 1, (1965), 100-113. [See p. 107 (Theorem 6.1 with k = p = 2) and p. 112 (Table III).]
FORMULA
a(n) = Sum_{1*s_1+2*s_2+...=n} fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...), where fixA[s_1, s_2, ...] = Product_{i>=1} (Sum_{d|i} 2*d*s_d)^(2*s_i). - [Modified from Christian G. Bower's contribution in A054050 by Petros Hadjicostas, Mar 08 2021 using Theorem 6.1 in Harrison (1965) with k = 2 inputs and p = 2 outputs.]
PROG
(PARI) A054052(n) = {local(p=vector(n)); my(S=0, A() = prod(i=1, n, sumdiv(i, d, 2*d*p[d])^(2*p[i])), inc()=!forstep(i=n, 1, -1, p[i]<n\i && p[i]++ && return; p[i]=0), t); until(inc(), t=0; for( i=1, n, if( n < t+=i*p[i], until(i++>n, p[i]=n); next(2))); t==n && S+ = A()/prod(i=1, n, i^p[i]*p[i]!)); S} \\ This is a modification of M. F. Hasler's PARI program from A002854. - Petros Hadjicostas, Mar 08 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Apr 29 2000
EXTENSIONS
Terms a(14)-a(16) from Petros Hadjicostas, Mar 08 2021.
STATUS
approved