login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054051
Number of nonisomorphic connected binary n-state automata.
1
1, 9, 119, 2662, 79154, 2962062, 132536919, 6904606698, 410379198542, 27406396140548, 2031843175944876, 165592123280454675, 14715292998356150461, 1416127682894394114138, 146723247630856311651736, 16284075762705841850155071, 1927434528878738556115924081, 242361176791511465207020367116
OFFSET
1,2
COMMENTS
Inverse Euler transform of A054050.
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, 1973. [See Section 6.5, pp. 146-150.]
LINKS
Christian G. Bower, PARI programs for transforms, 2007.
Michael A. Harrison, A census of finite automata, Canad. J. Math., 17, No. 1 (1965), 100-113. [See Theorem 6.1 (p. 107) with k = 2 and p = 1 and Theorem 7.2 (p. 110). See also Table I on p. 110.]
N. J. A. Sloane, Maple programs for transforms, 2001-2020.
PROG
(PARI) /* This program is a modification of Christian G. Bower's PARI program for the inverse Euler transform from the link above. */
lista(nn) = {local(A=vector(nn+1)); for(n=1, nn+1, A[n]=if(n==1, 1, A054050(n-1))); local(B=vector(#A-1, n, 1/n), C); A[1] = 1; C = log(Ser(A)); A=vecextract(A, "2.."); for(i=1, #A, A[i] = polcoeff(C, i)); A = dirdiv(A, B); } \\ Petros Hadjicostas, Mar 08 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Apr 29 2000
EXTENSIONS
Terms a(16)-a(18) from Petros Hadjicostas, Mar 08 2021
STATUS
approved