login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366446
Number of discrete aggregation functions defined on the finite chain L_n={0,1,...,n-1,n}.
0
4, 136, 21238, 15374304, 52326659814, 845020424183364, 65102985676317726176, 24005912569370916926920192, 42445533661127789112292364580400, 360256756545210313397342412375573121875, 14686785417300337272290307023148088973414062500
OFFSET
1,1
COMMENTS
The number of discrete aggregation functions on the finite chain L_n={0,1,...,n-1,n}, i.e., the number of monotonic increasing binary functions F: L_n^2->L_n such that F(0,0)=0 and F(n,n)=n.
LINKS
M. Munar, S. Massanet and D. Ruiz-Aguilera, On the cardinality of some families of discrete connectives, Information Sciences, Volume 621, 2023, 708-728.
FORMULA
a(n) = Product_{i=1..n+1} Product_{j=1..n+1} Product_{k=1..n} (i+j+k-1)/(i+j+k-2) - 2*Product_{i=1..n+1} Product_{j=1..n+1} Product_{k=1..n-1} (i+j+k-1)/(i+j+k-2) + Product_{i=1..n+1} Product_{j=1..n+1} Product_{k=1..n-2} (i+j+k-1)/(i+j+k-2).
From Vaclav Kotesovec, Nov 18 2023: (Start)
a(n) = BarnesG(n+1)^3 * BarnesG(3*n+1) * (3*Gamma(n) * Gamma(3*n) / Gamma(2*n)^2 - 2) * (3*(3*n+1) * Gamma(n) * Gamma(3*n) / Gamma(2*n)^2 - 2*(n-1)) / (16*(2*n+1) * BarnesG(2*n+1)^3)).
a(n) ~ exp(1/12) * 3^(9*n^2/2 + 6*n + 23/12) / (A * n^(1/12) * 2^(6*n^2 + 8*n + 11/4)), where A is the Glaisher-Kinkelin constant A074962. (End)
MATHEMATICA
Table[Product[
Product[Product[(i + j + k - 1)/(i + j + k - 2), {k, 1, n}], {j, 1,
n + 1}], {i, 1, n + 1}] -
2*Product[
Product[Product[(i + j + k - 1)/(
i + j + k - 2), {k, 1, n - 1}], {j, 1, n + 1}], {i, 1, n + 1}] +
Product[Product[
Product[(i + j + k - 1)/(i + j + k - 2), {k, 1, n - 2}], {j, 1,
n + 1}], {i, 1, n + 1}], {n, 2, 13}]
Table[BarnesG[n + 1]^3 * BarnesG[3*n + 1]*(3*Gamma[n] * Gamma[3*n]/Gamma[2*n]^2 - 2) * (3*(3*n + 1)*Gamma[n]*Gamma[3*n]/Gamma[2*n]^2 - 2*(n-1)) / (16*(2*n + 1) * BarnesG[2*n + 1]^3), {n, 1, 13}] (* Vaclav Kotesovec, Nov 18 2023 *)
CROSSREFS
Sequence in context: A012052 A054052 A012070 * A001374 A229416 A155207
KEYWORD
nonn
AUTHOR
Marc Munar, Oct 10 2023
STATUS
approved