login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366447
Number of commutative discrete aggregation functions defined on the finite chain L_n={0,1,...,n-1,n}.
1
2, 20, 436, 20328, 2031458, 437195902, 203480382352, 205483944581920, 451366246767611480, 2160705231357646411125, 22573295655756312398175000, 515221804925867786482305225000, 25712664286501013077919242976580000, 2807516217865237733692455994521326628000
OFFSET
1,1
COMMENTS
The number of commutative discrete aggregation functions on the finite chain L_n={0,1,...,n-1,n}, i.e., the number of monotonic increasing binary functions F: L_n^2->L_n such that F(x,y)=F(y,x) for all x,y in L_n, F(0,0)=0 and F(n,n)=n.
LINKS
M. Munar, S. Massanet and D. Ruiz-Aguilera, On the cardinality of some families of discrete connectives, Information Sciences, 621 (2023), 708-728.
FORMULA
a(n) = Product_{i=1..n+1}((2i+n-1)/(2i-1) Product_{j=i+1..n+1}((i+j+n-1)/(i+j-1))) - 2*Product_{i=1..n+1}((2i+n-2)/(2i-1) Product_{j=i+1..n+1}((i+j+n-2)/(i+j-1))) + Product_{i=1..n+1}((2i+n-3)/(2i-1) Product_{j=i+1..n+1}((i+j+n-3)/(i+j-1)))
From Vaclav Kotesovec, Nov 18 2023: (Start)
a(n) = BarnesG(n+1)^(3/2) * sqrt(BarnesG(3*n)) * Gamma(3*n) * (2*(n-1) * Gamma(n/2) * Gamma(2*n)^2 - 3*2^(n+2) * Gamma(3*n/2) * Gamma(2*n) * Gamma(n+1) + 3*(3*n+1) * Gamma(n/2) * Gamma(n) * Gamma(3*n)) / (4*(2*n + 1) * BarnesG(2*n)^(3/2) * sqrt(2*Gamma(n/2) * Gamma(3*n/2)) * Gamma(2*n)^4).
a(n) ~ exp(1/24) * 3^(9*n^2/4 + 15*n/4 + 35/24) / (sqrt(A) * n^(1/24) * 2^(3*n^2 + 9*n/2 + 17/8)), where A is the Glaisher-Kinkelin constant A074962. (End)
MATHEMATICA
Table[Product[(2*i + n - 1)/(2*i - 1)*
Product[(i + j + n - 1)/(i + j - 1), {j, i + 1, n + 1}], {i, 1,
n + 1}] -
2*Product[(2*i + n - 2)/(2*i - 1)*
Product[(i + j + n - 2)/(i + j - 1), {j, i + 1, n + 1}], {i, 1,
n + 1}] +
Product[(2*i + n - 3)/(2*i - 1)*
Product[(i + j + n - 3)/(i + j - 1), {j, i + 1, n + 1}], {i, 1,
n + 1}], {n, 2, 13}]
Table[BarnesG[n+1]^(3/2) * Sqrt[BarnesG[3*n]] * Gamma[3*n] * (2*(n-1) * Gamma[n/2] * Gamma[2*n]^2 - 3*2^(n+2) * Gamma[3*n/2] * Gamma[2*n] * Gamma[n+1] + 3*(3*n+1) * Gamma[n/2] * Gamma[n] * Gamma[3*n]) / (4*(2*n + 1) * BarnesG[2*n]^(3/2) * Sqrt[2*Gamma[n/2]*Gamma[3*n/2]] * Gamma[2*n]^4), {n, 1, 14}] (* Vaclav Kotesovec, Nov 18 2023 *)
CROSSREFS
Sequence in context: A002116 A058346 A165554 * A009746 A009749 A012533
KEYWORD
nonn
AUTHOR
Marc Munar, Oct 10 2023
STATUS
approved