The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A366448 Number of distinct characteristic polynomials for 2 X 2 matrices with entries from {0, 1, ..., n}. 3
 1, 6, 22, 58, 116, 221, 356, 573, 824, 1163, 1565, 2143, 2697, 3527, 4385, 5388, 6455, 7992, 9342, 11262, 12953, 15034, 17301, 20246, 22595, 25823, 29054, 32679, 36228, 41112, 44964, 50600, 55288, 60770, 66543, 72927, 78173, 86577, 93925, 101775, 108798 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Robert P. P. McKone, Table of n, a(n) for n = 0..149 Robert P. P. McKone, The distinct characteristic polynomials for a(0)-a(23). FORMULA a(n) <= A058331(n) * A005408(n) = 4*n^3 + 2*n^2 + 2*n + 1. EXAMPLE For n = 1 the a(1) = 6 characteristic polynomials are {x^2, -4 + x^2, -2 + x^2, -1 + x^2, -4*x + x^2, 2-4*x + x^2}. MATHEMATICA mat[n_Integer?Positive]:=mat[n]=Array[m, {n, n}]; flatMat[n_Integer?Positive]:=flatMat[n]=Flatten[mat[n]]; charPolyMat[n_Integer?Positive]:=charPolyMat[n]=FullSimplify[CoefficientList[Expand[CharacteristicPolynomial[mat[n], x]], x]]; a[d_Integer?Positive, 0]=1; a[d_Integer?Positive, n_Integer?Positive]:=a[d, n]=Length[DeleteDuplicates[Flatten[Table[Evaluate[charPolyMat[d]], ##]&@@Table[{flatMat[d][[i]], 0, n}, {i, 1, d^2}], 3]]]; Table[a[2, n], {n, 0, 41}] PROG (PARI) a(n) = my(list=List()); for (i=0, n, for (j=0, n, for(k=0, n, for(m=0, n, my(p=charpoly([i, j; k, m])); listput(list, p))))); #Set(list); \\ Michel Marcus, Oct 11 2023 (Python) def A366448(n): return len({(a+d, a*d-b*c) for a in range(n+1) for b in range(n+1) for c in range(b+1) for d in range(a+1)}) # Chai Wah Wu, Oct 12 2023 CROSSREFS Cf. A366551 (3 X 3 matrices). Cf. A058331 (determinants), A005408 (traces). Cf. A272659, A365926. Sequence in context: A081441 A363614 A363606 * A127760 A320243 A066188 Adjacent sequences: A366445 A366446 A366447 * A366449 A366450 A366451 KEYWORD nonn AUTHOR Robert P. P. McKone, Oct 10 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 22:50 EDT 2024. Contains 373412 sequences. (Running on oeis4.)