login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of discrete aggregation functions defined on the finite chain L_n={0,1,...,n-1,n}.
0

%I #9 Nov 18 2023 15:18:48

%S 4,136,21238,15374304,52326659814,845020424183364,

%T 65102985676317726176,24005912569370916926920192,

%U 42445533661127789112292364580400,360256756545210313397342412375573121875,14686785417300337272290307023148088973414062500

%N Number of discrete aggregation functions defined on the finite chain L_n={0,1,...,n-1,n}.

%C The number of discrete aggregation functions on the finite chain L_n={0,1,...,n-1,n}, i.e., the number of monotonic increasing binary functions F: L_n^2->L_n such that F(0,0)=0 and F(n,n)=n.

%H M. Munar, S. Massanet and D. Ruiz-Aguilera, <a href="https://doi.org/10.1016/j.ins.2022.10.121">On the cardinality of some families of discrete connectives</a>, Information Sciences, Volume 621, 2023, 708-728.

%F a(n) = Product_{i=1..n+1} Product_{j=1..n+1} Product_{k=1..n} (i+j+k-1)/(i+j+k-2) - 2*Product_{i=1..n+1} Product_{j=1..n+1} Product_{k=1..n-1} (i+j+k-1)/(i+j+k-2) + Product_{i=1..n+1} Product_{j=1..n+1} Product_{k=1..n-2} (i+j+k-1)/(i+j+k-2).

%F From _Vaclav Kotesovec_, Nov 18 2023: (Start)

%F a(n) = BarnesG(n+1)^3 * BarnesG(3*n+1) * (3*Gamma(n) * Gamma(3*n) / Gamma(2*n)^2 - 2) * (3*(3*n+1) * Gamma(n) * Gamma(3*n) / Gamma(2*n)^2 - 2*(n-1)) / (16*(2*n+1) * BarnesG(2*n+1)^3)).

%F a(n) ~ exp(1/12) * 3^(9*n^2/2 + 6*n + 23/12) / (A * n^(1/12) * 2^(6*n^2 + 8*n + 11/4)), where A is the Glaisher-Kinkelin constant A074962. (End)

%t Table[Product[

%t Product[Product[(i + j + k - 1)/(i + j + k - 2), {k, 1, n}], {j, 1,

%t n + 1}], {i, 1, n + 1}] -

%t 2*Product[

%t Product[Product[(i + j + k - 1)/(

%t i + j + k - 2), {k, 1, n - 1}], {j, 1, n + 1}], {i, 1, n + 1}] +

%t Product[Product[

%t Product[(i + j + k - 1)/(i + j + k - 2), {k, 1, n - 2}], {j, 1,

%t n + 1}], {i, 1, n + 1}], {n, 2, 13}]

%t Table[BarnesG[n + 1]^3 * BarnesG[3*n + 1]*(3*Gamma[n] * Gamma[3*n]/Gamma[2*n]^2 - 2) * (3*(3*n + 1)*Gamma[n]*Gamma[3*n]/Gamma[2*n]^2 - 2*(n-1)) / (16*(2*n + 1) * BarnesG[2*n + 1]^3), {n, 1, 13}] (* _Vaclav Kotesovec_, Nov 18 2023 *)

%K nonn

%O 1,1

%A _Marc Munar_, Oct 10 2023