The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047980 a(n) is smallest difference d of an arithmetic progression dk+1 whose first prime occurs at the n-th position. 3
 1, 3, 24, 7, 38, 17, 184, 71, 368, 19, 668, 59, 634, 167, 512, 757, 1028, 197, 1468, 159, 3382, 799, 4106, 227, 10012, 317, 7628, 415, 11282, 361, 38032, 521, 53630, 3289, 37274, 2633, 63334, 1637, 34108, 1861, 102296, 1691, 119074, 1997, 109474, 2053 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Definition involves two minimal conditions: (1) the first prime (as in A034693) and (2) dk+1 sequences were searched with minimal d. Present terms are the first ones in sequences analogous to A034780, A034782-A034784, A006093 (called there K(n,m)). Index of the first occurrence of n in A034693. - Amarnath Murthy, May 08 2003 LINKS Jon E. Schoenfield, Table of n, a(n) for n = 1..150 (terms 1..72 from Robert Israel) Jon E. Schoenfield, Terms <= 5*10^8: Table of n, a(n) for n = 1..406, with -1 for each term > 5*10^8 Index entries for sequences related to primes in arithmetic progressions FORMULA a(n) = min{k | A034693(k) = n}. EXAMPLE For n=2, the sequence with d=1 is 2,3,4,5,... with the prime 2 for k=1. The sequence with d=2 is 3,5,7,9,... with the prime 3 for k=1. The sequence with d=3 is 4,7,10,13,... with the prime 7 for k=2. So a(n)=3. - Michael B. Porter, Mar 18 2019 MAPLE N:= 40: # to get a(n) for n <= N count:= 0: p:= 0: Ds:= {1}: while count < N do p:= nextprime(p); ds:= select(d -> (p-1)/d <= N, numtheory:-divisors(p-1) minus Ds); for d in ds do n:= (p-1)/d; if not assigned(A[n]) then A[n]:= d; count:= count+1; fi od: Ds:= Ds union ds; od: seq(A[i], i=1..N); # Robert Israel, Jan 25 2016 MATHEMATICA With[{s = Table[k = 1; While[! PrimeQ[k n + 1], k++]; k, {n, 10^6}]}, TakeWhile[#, # > 0 &] &@ Flatten@ Array[FirstPosition[s, #] /. k_ /; MissingQ@ k -> {0} &, Max@ s]] (* Michael De Vlieger, Aug 01 2017 *) PROG (MATLAB) function [ A ] = A047980( P, N ) % Get values a(i) for i <= N with a(i) <= P/i % using primes <= P. % Returned entries A(n) = 0 correspond to unknown a(n) > P/n Primes = primes(P); A = zeros(1, N); Ds = zeros(1, P); for p = Primes ns = [1:N]; ns = ns(mod((p-1) * ones(1, N), ns) == 0); newds = (p-1) ./ns; ns = ns(A(ns) == 0); ds = (p-1) ./ ns; q = (Ds(ds) == 0); A(ns(q)) = ds(q); Ds(newds) = 1; end end % Robert Israel, Jan 25 2016 CROSSREFS Cf. A034693, A034694, A034780, A034782, A034783, A034784, A006093, A047981, A047982. Sequence in context: A204578 A120085 A062834 * A084702 A367190 A168061 Adjacent sequences: A047977 A047978 A047979 * A047981 A047982 A047983 KEYWORD nonn AUTHOR Labos Elemer STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 22:07 EDT 2024. Contains 373507 sequences. (Running on oeis4.)