login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367190
Table read by antidiagonals: Place k points in general position on each side of a regular n-gon and join every pair of the n*(k+1) boundary points by a chord; T(n,k) (n >= 3, k >= 0) gives number of edges in the resulting planar graph.
2
3, 24, 8, 153, 124, 20, 588, 780, 390, 42, 1635, 2816, 2370, 939, 91, 3708, 7480, 8300, 5568, 1932, 136, 7329, 16428, 21600, 19149, 11193, 3512, 288, 13128, 31724, 46770, 49242, 37996, 20176, 5994, 390, 21843, 55840, 89390, 105747, 96915, 67936, 33750, 9455, 715
OFFSET
3,1
COMMENTS
"In general position" implies that the internal lines (or chords) formed from the n*k edge points only have simple intersections; there is no interior points where three or more such chords meet. Note that for even-n n-gons, with n>=6, the chords from the n corner points do create non-simple intersections.
See A367183 and A366253 for images of the n-gons.
FORMULA
T(n,k) = A367183(n,k) + A366253(n,k) - 1 by Euler's formula.
Conjectures:
T(3,k) = A367119(k) = (9/2)*k^4 + 6*k^3 + (9/2)*k^2 + 6*k + 3.
T(4,k) = A367122(k) = 17*k^4 + 38*k^3 + 37*k^2 + 24*k + 8.
T(5,k) = 45*k^4 + 120*k^3 + 130*k^2 + 75*k + 20.
T(6,k) = (195/2)*k^4 + 285*k^3 + (657/2)*k^2 + 186*k + 42.
T(7,k) = (371/2)*k^4 + 574*k^3 + (1379/2)*k^2 + 392*k + 91.
T(8,k) = 322*k^4 + 1036*k^3 + 1282*k^2 + 736*k + 136.
T(9,k) = 522*k^4 + 1728*k^3 + 2187*k^2 + 1269*k + 288.
T(10,k) = (1605/2)*k^4 + 2715*k^3 + (6995/2)*k^2 + 2050*k + 390.
EXAMPLE
The table begins:
3, 24, 153, 588, 1635, 3708, 7329, 13128, 21843, 34320, 51513, 74484, 104403,...
8, 124, 780, 2816, 7480, 16428, 31724, 55840, 91656, 142460, 211948, 304224,...
20, 390, 2370, 8300, 21600, 46770, 89390, 156120, 254700, 393950, 583770,...
42, 939, 5568, 19149, 49242, 105747, 200904, 349293, 567834, 875787, 1294752,...
91, 1932, 11193, 37996, 96915, 206976, 391657, 678888, 1101051, 1694980,...
136, 3512, 20176, 67936, 172328, 366616, 691792, 1196576, 1937416, 2978488,...
288, 5994, 33750, 112716, 284580, 603558, 1136394, 1962360, 3173256, 4873410,...
390, 9455, 53040, 176325, 443750, 939015, 1765080, 3044165, 4917750, 7546575,...
715, 14432, 79761, 263692, 661595, 1397220, 2622697, 4518536, 7293627,...
756, 20712, 115008, 379476, 950340, 2004216, 3758112, 6469428, 10435956,...
1508, 29614, 161538, 530348, 1324960, 2790138, 5226494, 8990488, 14494428,...
1722, 40243, 220024, 721245, 1799434, 3785467, 7085568, 12181309, 19629610,...
2835, 54420, 293985, 960300, 2391675, 5025960, 9400545, 16152360, 26017875,...
3088, 70800, 383904, 1252960, 3117648, 6546768, 12238240, 21019104,...
.
.
.
CROSSREFS
Cf. A367119 (first row), A367122 (second row), A135565 (first column), A367183 (vertices), A366253 (regions).
Sequence in context: A062834 A047980 A084702 * A168061 A261381 A365971
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved